IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.00189.html
   My bibliography  Save this paper

Sequential Sampling for CGMY Processes via Decomposition of their Time Changes

Author

Listed:
  • Chengwei Zhang
  • Zhiyuan Zhang

Abstract

We present a new and easy-to-implement sequential sampling method for CGMY processes with either finite or infinite variation, exploiting the time change representation of the CGMY model and a decomposition of its time change. We find that the time change can be decomposed into two independent components. While the first component is a \emph{finite} \emph{generalized gamma convolution} process whose increments can be sampled by either the exact double CFTP ("coupling from the past") method or an approximation scheme with high speed and accuracy, the second component can easily be made arbitrarily small in the $L^1$ sense. Simulation results show that the proposed method is advantageous over two existing methods under a model calibrated to historical option price data.

Suggested Citation

  • Chengwei Zhang & Zhiyuan Zhang, 2017. "Sequential Sampling for CGMY Processes via Decomposition of their Time Changes," Papers 1708.00189, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1708.00189
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.00189
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    3. Lancelot F. James & Dohyun Kim & Zhiyuan Zhang, 2013. "Exact simulation pricing with Gamma processes and their extensions," Papers 1310.6526, arXiv.org, revised Nov 2013.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    6. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    7. Laura Ballotta & Ioannis Kyriakou, 2014. "Monte Carlo Simulation of the CGMY Process and Option Pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1095-1121, December.
    8. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    9. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Søren Asmussen, 2022. "On the role of skewness and kurtosis in tempered stable (CGMY) Lévy models in finance," Finance and Stochastics, Springer, vol. 26(3), pages 383-416, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengwei Zhang & Zhiyuan Zhang, 2018. "Sequential sampling for CGMY processes via decomposition of their time changes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 522-534, September.
    2. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    3. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    4. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    5. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    6. Lorenzo Torricelli, 2016. "Valuation of asset and volatility derivatives using decoupled time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 19(1), pages 1-39, April.
    7. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    8. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    9. Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
    10. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    11. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    12. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
    13. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    14. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    15. David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
    16. Cai, Chengyou & Wang, Xingchun & Yu, Baimin, 2024. "Pricing vulnerable spread options with liquidity risk under Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    17. Weng, Chengguo, 2013. "Constant proportion portfolio insurance under a regime switching exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 508-521.
    18. Chang, Lung-fu & Hung, Mao-wei, 2009. "Analytical valuation of catastrophe equity options with negative exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 59-69, February.
    19. Huiling Wu, 2013. "Mean-Variance Portfolio Selection with a Stochastic Cash Flow in a Markov-switching Jump–Diffusion Market," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 918-934, September.
    20. Dan Pirjol & Lingjiong Zhu, 2023. "Asymptotics for Short Maturity Asian Options in Jump-Diffusion models with Local Volatility," Papers 2308.15672, arXiv.org, revised Feb 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.00189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.