IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i2p281-296.html
   My bibliography  Save this article

Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning

Author

Listed:
  • Vasileios Gkonis
  • Ioannis Tsakalos

Abstract

Forecasting customer churn has long been a major issue in the banking sector because the early identification of customer exit is crucial for the sustainability of banks. However, modeling customer churn is hampered by imbalanced data between classification classes, where the churn class is typically significantly smaller than the no‐churn class. In this study, we examine the performance of deep neural networks for predicting customer churn in the banking sector, while incorporating various resampling techniques to overcome the challenges posed by imbalanced datasets. In this work we propose the utilization of the APTx activation function to enhance our model’s forecasting ability. In addition, we compare the effectiveness of different combinations of activation functions, optimizers, and resampling techniques to identify configurations that yield promising results for predicting customer churn. Our results offer dual insights, enriching the existing literature in the field of hyperparameter selection, imbalanced learning, and churn prediction, while also revealing that APTx can be a promising component in the field of neural networks.

Suggested Citation

  • Vasileios Gkonis & Ioannis Tsakalos, 2025. "Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 281-296, March.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:281-296
    DOI: 10.1002/for.3194
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3194
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:281-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.