IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i1p173-199.html
   My bibliography  Save this article

Toward a smart forecasting model in supply chain management: A case study of coffee in Vietnam

Author

Listed:
  • Thi Thuy Hanh Nguyen
  • Abdelghani Bekrar
  • Thi Muoi Le
  • Mourad Abed
  • Anirut Kantasa‐ard

Abstract

Forecasting is a crucial part of supply chain management. Accurate forecasts have a strong influence on supply chain performance. Many forecasting methods have been developed and adapted in various domains and industries. However, none are perfect in all contexts due to the data's characteristics and the methods' strength. Hence, we propose a new ARIMAX‐LSTM hybrid forecasting model that integrates ARIMAX and LSTM models to improve the ability to capture different combinations of linear and nonlinear patterns in time series. Our proposed model is validated in a case study of coffee demand in Vietnam. The case study results show that our proposed model outperforms the well‐known single and current hybrid models regarding performance measures and degree of association. Moreover, to prove the model's robustness, we test and compare our proposed model to the previous study for Thailand's agricultural products (pineapple, corn, and cassava). Computational results demonstrate that our hybrid model is superior in the majority of experiments. It has a strong capability of predicting complex time series data. Furthermore, our proposed method increases forecasting accuracy and enhances supply chain performance (measured by the bullwhip effect; net‐stock amplification, and transportation cost.

Suggested Citation

  • Thi Thuy Hanh Nguyen & Abdelghani Bekrar & Thi Muoi Le & Mourad Abed & Anirut Kantasa‐ard, 2025. "Toward a smart forecasting model in supply chain management: A case study of coffee in Vietnam," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 173-199, January.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:1:p:173-199
    DOI: 10.1002/for.3189
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3189
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jha, Girish K. & Sinha, Kanchan, 2013. "Agricultural Price Forecasting Using Neural Network Model: An Innovative Information Delivery System," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(2).
    2. Yotsaphat Kittichotsatsawat & Varattaya Jangkrajarng & Korrakot Yaibuathet Tippayawong, 2021. "Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    3. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    4. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    5. Christopher Bennett & Rodney A. Stewart & Junwei Lu, 2014. "Autoregressive with Exogenous Variables and Neural Network Short-Term Load Forecast Models for Residential Low Voltage Distribution Networks," Energies, MDPI, vol. 7(5), pages 1-23, April.
    6. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The role of the forecasting process in improving forecast accuracy and operational performance," International Journal of Production Economics, Elsevier, vol. 131(1), pages 204-214, May.
    7. Anirut Kantasa-ard & Maroua Nouiri & Abdelghani Bekrar & Abdessamad Ait el cadi & Yves Sallez, 2021. "Machine learning for demand forecasting in the physical internet: a case study of agricultural products in Thailand," International Journal of Production Research, Taylor & Francis Journals, vol. 59(24), pages 7491-7515, December.
    8. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    9. Hyeong Kyu Choi, 2018. "Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid Model," Papers 1808.01560, arXiv.org, revised Oct 2018.
    10. Robert N. Boute & Marc R. Lambrecht, 2009. "Exploring the Bullwhip Effect by Means of Spreadsheet Simulation," INFORMS Transactions on Education, INFORMS, vol. 10(1), pages 1-9, September.
    11. Afees A. Salisu & Raymond Swaray & Idris A. Adediran, 2019. "Can urban coffee consumption help predict US inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(7), pages 649-668, November.
    12. Luong, Huynh Trung & Phien, Nguyen Huu, 2007. "Measure of bullwhip effect in supply chains: The case of high order autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 183(1), pages 197-209, November.
    13. Thich V. Nguyen & Nam C. Nguyen & Ockie J.H. Bosch, 2015. "Contribution of the systems thinking approach to reduce production cost and improve the quality of Vietnamese coffee," International Journal of Markets and Business Systems, Inderscience Enterprises Ltd, vol. 1(1), pages 53-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Hadizadeh & Amir Abbas Shojaie, 2017. "A Measure of SCM Bullwhip Effect Under Mixed Autoregressive-Moving Average with Errors Heteroscedasticity (ARMA(1,1)–GARCH(1,1)) Model," Annals of Data Science, Springer, vol. 4(1), pages 83-104, March.
    2. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    3. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    4. Sadeghi, Ahmad, 2015. "Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts," International Journal of Production Economics, Elsevier, vol. 169(C), pages 44-54.
    5. Nagaraja, C.H. & Thavaneswaran, A. & Appadoo, S.S., 2015. "Measuring the bullwhip effect for supply chains with seasonal demand components," European Journal of Operational Research, Elsevier, vol. 242(2), pages 445-454.
    6. Coqueret, Guillaume & Deguest, Romain, 2024. "Unexpected opportunities in misspecified predictive regressions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 686-700.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    9. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    10. Rupesh Kumar Pati, 2014. "Modelling Bullwhip Effect in a Closed Loop Supply Chain with ARMA Demand," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 149-164, July.
    11. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    12. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    13. Erkan Bayraktar & Kazim Sari & Ekrem Tatoglu & Selim Zaim & Dursun Delen, 2020. "Assessing the supply chain performance: a causal analysis," Annals of Operations Research, Springer, vol. 287(1), pages 37-60, April.
    14. Dass, Mayukh & Fox, Gavin L., 2011. "A holistic network model for supply chain analysis," International Journal of Production Economics, Elsevier, vol. 131(2), pages 587-594, June.
    15. Dass, Mayukh & Reshadi, Mehrnoosh & Li, Yuewu, 2023. "An exploration of ripple effects of advertising among major suppliers in a supply chain network," Journal of Business Research, Elsevier, vol. 169(C).
    16. Junhai Ma & Jing Zhang & Liqing Zhu, 2018. "Study of the Bullwhip Effect under Various Forecasting Methods in Electronics Supply Chain with Dual Retailers considering Market Share," Complexity, Hindawi, vol. 2018, pages 1-19, January.
    17. Adenso-Díaz, Belarmino & Moreno, Plácido & Gutiérrez, Ester & Lozano, Sebastián, 2012. "An analysis of the main factors affecting bullwhip in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 135(2), pages 917-928.
    18. Gaalman, Gerard & Disney, Stephen M. & Wang, Xun, 2022. "When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand," International Journal of Production Economics, Elsevier, vol. 250(C).
    19. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    20. Junhai Ma & Xiaogang Ma, 2017. "Measure of the bullwhip effect considering the market competition between two retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 313-326, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:1:p:173-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.