IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i7p2540-2571.html
   My bibliography  Save this article

Forecasting corporate financial performance with deep learning and interpretable ALE method: Evidence from China

Author

Listed:
  • Longyue Liang
  • Bo Liu
  • Zhi Su
  • Xuanye Cai

Abstract

Forecasting and analyzing corporate financial performance are of significant value to investors, managers, and regulators. In this paper, we constructed the one‐dimensional convolutional neural networks (1D‐CNN) and long short‐term memory (LSTM) deep learning models to investigate the feasibility of forecasting corporate financial performance with deep learning models, using the corporate financial features and environment, social and governance (ESG) rating index of Chinese A‐share listed corporation data from 2015 to 2021. Five evaluation metrics were employed to measure models' forecasting effects, and four competing machine learning models were built to verify the improvement in forecasting accuracy brought by the deep learning models. Furthermore, we also introduced the Accumulated Local Effects method to explore the forecasting processes of the deep learning models. The empirical results show the following: (1) Deep learning models can effectively extract the time‐series information in corporate data, thereby solving the task of predicting corporate financial performance with high accuracy. (2) The introduction of ESG information significantly contributes to the forecasting accuracy of corporate financial performance. For both 1D‐CNN and LSTM models, the ESG rating index can provide additional useful information for forecasting. (3) The interpretable results reveal the preference and emphasis of the two deep learning models for the different features. This further proves the robustness and reliability of deep learning models in forecasting corporate financial performance.

Suggested Citation

  • Longyue Liang & Bo Liu & Zhi Su & Xuanye Cai, 2024. "Forecasting corporate financial performance with deep learning and interpretable ALE method: Evidence from China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2540-2571, November.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:7:p:2540-2571
    DOI: 10.1002/for.3138
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3138
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zoey Wong & Afei Chen & Farhad Taghizadeh-Hesary & Rongrong Li & Qunxi Kong, 2023. "Financing Constraints and Firm’s Productivity Under the COVID-19 Epidemic Shock: Evidence of A-Shared Chinese Companies," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 35(1), pages 167-195, February.
    2. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    3. Rui Albuquerque & Yrjö Koskinen & Chendi Zhang, 2019. "Corporate Social Responsibility and Firm Risk: Theory and Empirical Evidence," Management Science, INFORMS, vol. 65(10), pages 4451-4469, October.
    4. Xiaobo Tang & Shixuan Li & Mingliang Tan & Wenxuan Shi, 2020. "Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 769-787, August.
    5. Martin Kyere & Marcel Ausloos, 2021. "Corporate governance and firms financial performance in the United Kingdom," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1871-1885, April.
    6. Abarbanell, JS & Bushee, BJ, 1997. "Fundamental analysis, future earnings, and stock prices," Journal of Accounting Research, Wiley Blackwell, vol. 35(1), pages 1-24.
    7. Gunnar Friede & Timo Busch & Alexander Bassen, 2015. "ESG and financial performance: aggregated evidence from more than 2000 empirical studies," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 5(4), pages 210-233, October.
    8. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    9. Li, Ming-Yuan Leon & Miu, Peter, 2010. "A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 818-833, September.
    10. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    11. He Huang & Ye Ye, 2021. "Rethinking capital structure decision and corporate social responsibility in response to COVID‐19," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4757-4788, September.
    12. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    13. Joonhyuck Lee & Dongsik Jang & Sangsung Park, 2017. "Deep Learning-Based Corporate Performance Prediction Model Considering Technical Capability," Sustainability, MDPI, vol. 9(6), pages 1-12, May.
    14. Ou, Jane A. & Penman, Stephen H., 1989. "Financial statement analysis and the prediction of stock returns," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 295-329, November.
    15. Sigrist, Fabio & Hirnschall, Christoph, 2019. "Grabit: Gradient tree-boosted Tobit models for default prediction," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 177-192.
    16. Mohammed Issah & Samuel Antwi, 2017. "Role of macroeconomic variables on firms’ performance: Evidence from the UK," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1405581-140, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richardson, Scott & Tuna, Irem & Wysocki, Peter, 2010. "Accounting anomalies and fundamental analysis: A review of recent research advances," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 410-454, December.
    2. Meles, Antonio & Salerno, Dario & Sampagnaro, Gabriele & Verdoliva, Vincenzo & Zhang, Jianing, 2023. "The influence of green innovation on default risk: Evidence from Europe," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 692-710.
    3. Ken Li, 2024. "Liquidity ratios and corporate failures," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 1111-1134, March.
    4. Hoang Hiep Nguyen & Jean-Laurent Viviani & Sami Ben Jabeur, 2023. "Bankruptcy prediction using machine learning and Shapley additive explanations," Post-Print hal-04223161, HAL.
    5. Alexander Hölzl & Sebastian Lobe, 2016. "Predicting above-median and below-median growth rates," Review of Managerial Science, Springer, vol. 10(1), pages 105-133, January.
    6. Subhransu S. Mohanty & Odette Mohanty & Mike Ivanof, 2021. "Alpha enhancement in global equity markets with ESG overlay on factor-based investment strategies," Risk Management, Palgrave Macmillan, vol. 23(3), pages 213-242, September.
    7. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    8. Ayoola Tajudeen John & Obokoh Lawrence Ogechukwu, 2018. "Corporate Governance and Financial Distress in the Banking Industry: Nigerian Experience," Journal of Economics and Behavioral Studies, AMH International, vol. 10(1), pages 182-193.
    9. Qunfeng LIAO & Seyed MEHDIAN, 2016. "Measuring Financial Distress And Predicting Corporate Bankruptcy: An Index Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 33-51, June.
    10. Yue Qiu & Jiabei He & Zhensong Chen & Yinhong Yao & Yi Qu, 2024. "A novel semisupervised learning method with textual information for financial distress prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2478-2494, November.
    11. Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
    12. Zhang, Tianjiao & Zhu, Weidong & Wu, Yong & Wu, Zihao & Zhang, Chao & Hu, Xue, 2023. "An explainable financial risk early warning model based on the DS-XGBoost model," Finance Research Letters, Elsevier, vol. 56(C).
    13. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
    14. Keating, Elizabeth K. & Fischer, Mary & Gordon, Teresa P. & Greenlee, Janet, 2005. "Assessing Financial Vulnerability in the Nonprofit Sector," Working Paper Series rwp05-002, Harvard University, John F. Kennedy School of Government.
    15. Afik, Zvika & Arad, Ohad & Galil, Koresh, 2016. "Using Merton model for default prediction: An empirical assessment of selected alternatives," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 43-67.
    16. Anwer, Zaheer & Goodell, John W. & Migliavacca, Milena & Paltrinieri, Andrea, 2023. "Does ESG impact systemic risk? Evidencing an inverted U-shape relationship for major energy firms," Journal of Economic Behavior & Organization, Elsevier, vol. 216(C), pages 10-25.
    17. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    18. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    19. Yinghua Song & Minzhe Jiang & Shixuan Li & Shengzhe Zhao, 2024. "Class‐imbalanced financial distress prediction with machine learning: Incorporating financial, management, textual, and social responsibility features into index system," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 593-614, April.
    20. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:7:p:2540-2571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.