IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i8p2027-2044.html
   My bibliography  Save this article

Uncertainty analysis–forecasting system based on decomposition–ensemble framework for PM2.5 concentration forecasting in China

Author

Listed:
  • Zongxi Qu
  • Xiaogang Hao
  • Fazhen Zhao
  • Chunhua Niu

Abstract

Practical analysis and forecasting of PM2.5 concentrations is complex and challenging owing to the volatility and non‐stationarity of PM2.5 series. Most previous studies mainly focused on deterministic predictions, whereas the uncertainty in the prediction is not considered. In this study, a novel uncertainty analysis–forecasting system comprising distribution function analysis, intelligent deterministic prediction, and interval prediction is designed. Based on the characteristics of PM2.5 series, 16 hybrid models composed of various distribution functions and swarm optimization algorithms are selected to determine the exact PM2.5 distribution. Subsequently, a hybrid deterministic forecasting model based on a novel decomposition–ensemble framework is established for PM2.5 prediction. Regarding uncertainty analysis, interval prediction is established to provide uncertain information required for decision–making based on the optimal distribution functions and deterministic prediction results. PM2.5 concentration series obtained from three cities in China are used to conduct an empirical study. The empirical results show that the proposed system can achieve better prediction results than other comparable models as well as provide meaningful and practical quantification of future PM trends. Hence, the system can provide more constructive suggestions for government administrators and the public.

Suggested Citation

  • Zongxi Qu & Xiaogang Hao & Fazhen Zhao & Chunhua Niu, 2023. "Uncertainty analysis–forecasting system based on decomposition–ensemble framework for PM2.5 concentration forecasting in China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2027-2044, December.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2027-2044
    DOI: 10.1002/for.3005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3005
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianzhou Wang & Tong Niu & Rui Wang, 2017. "Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model," IJERPH, MDPI, vol. 14(3), pages 1-33, March.
    2. Mei Yang & Hong Fan & Kang Zhao, 2019. "PM 2.5 Prediction with a Novel Multi-Step-Ahead Forecasting Model Based on Dynamic Wind Field Distance," IJERPH, MDPI, vol. 16(22), pages 1-21, November.
    3. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    2. Lahmiri, Salim, 2018. "Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 444-451.
    3. Th I Götz & G Lahmer & V Strnad & Ch Bert & B Hensel & A M Tomé & E W Lang, 2017. "A tool to automatically analyze electromagnetic tracking data from high dose rate brachytherapy of breast cancer patients," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-31, September.
    4. Hassani, Hossein & Huang, Xu & Gupta, Rangan & Ghodsi, Mansi, 2016. "Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 54-65.
    5. Carlos Alberto Orge Pinheiro & Valter de Senna, 2016. "Price Forecasting Through Multivariate Spectral Analysis: Evidence for Commodities of BMeFbovespa," Brazilian Business Review, Fucape Business School, vol. 13(5), pages 129-157, September.
    6. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    7. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    8. Stelios M. Potirakis & Masashi Hayakawa & Alexander Schekotov, 2017. "Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (M W = 9): discriminating possible earthquake precursors from space-sourced disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 59-86, January.
    9. Marinoiu Cristian, 2018. "Average Monthly Temperature Forecast In Romania By Using Singular Spectrum Analysis," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 48-57, June.
    10. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    11. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    12. Cheng-Hong Yang & Jen-Chung Shao & Yen-Hsien Liu & Pey-Huah Jou & Yu-Da Lin, 2022. "Application of Fuzzy-Based Support Vector Regression to Forecast of International Airport Freight Volumes," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    13. Ruben Fossion & Ana Leonor Rivera & Juan C Toledo-Roy & Jason Ellis & Maia Angelova, 2017. "Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    14. Menezes, Rui & Dionísio, Andreia & Hassani, Hossein, 2012. "On the globalization of stock markets: An application of Vector Error Correction Model, Mutual Information and Singular Spectrum Analysis to the G7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 369-384.
    15. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    16. Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
    17. Moody Chu & Matthew Lin & Liqi Wang, 2014. "A study of singular spectrum analysis with global optimization techniques," Journal of Global Optimization, Springer, vol. 60(3), pages 551-574, November.
    18. Deeraj Nagothu & Ronghua Xu & Yu Chen & Erik Blasch & Alexander Aved, 2022. "Deterring Deepfake Attacks with an Electrical Network Frequency Fingerprints Approach," Future Internet, MDPI, vol. 14(5), pages 1-20, April.
    19. Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
    20. Hossein Hassani & Zara Ghodsi & Rangan Gupta & Mawuli Segnon, 2017. "Forecasting Home Sales in the Four Census Regions and the Aggregate US Economy Using Singular Spectrum Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 83-97, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2027-2044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.