IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i1p181-200.html
   My bibliography  Save this article

A Bayesian time‐varying autoregressive model for improved short‐term and long‐term prediction

Author

Listed:
  • Christoph Berninger
  • Almond Stöcker
  • David Rügamer

Abstract

Motivated by the application to German interest rates, we propose a time‐varying autoregressive model for short‐term and long‐term prediction of time series that exhibit a temporary nonstationary behavior but are assumed to mean revert in the long run. We use a Bayesian formulation to incorporate prior assumptions on the mean reverting process in the model and thereby regularize predictions in the far future. We use MCMC‐based inference by deriving relevant full conditional distributions and employ a Metropolis‐Hastings within Gibbs sampler approach to sample from the posterior (predictive) distribution. In combining data‐driven short‐term predictions with long‐term distribution assumptions our model is competitive to the existing methods in the short horizon while yielding reasonable predictions in the long run. We apply our model to interest rate data and contrast the forecasting performance to that of a 2‐Additive‐Factor Gaussian model as well as to the predictions of a dynamic Nelson‐Siegel model.

Suggested Citation

  • Christoph Berninger & Almond Stöcker & David Rügamer, 2022. "A Bayesian time‐varying autoregressive model for improved short‐term and long‐term prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 181-200, January.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:1:p:181-200
    DOI: 10.1002/for.2802
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2802
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Greg Duffee, 2011. "Forecasting with the term structure: The role of no-arbitrage restrictions," Economics Working Paper Archive 576, The Johns Hopkins University,Department of Economics.
    2. Geert Bekaert & Seonghoon Cho & Antonio Moreno, 2010. "New Keynesian Macroeconomics and the Term Structure," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 33-62, February.
    3. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    4. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    5. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    6. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    7. Glenn D. Rudebusch & Tao Wu, 2008. "A Macro‐Finance Model of the Term Structure, Monetary Policy and the Economy," Economic Journal, Royal Economic Society, vol. 118(530), pages 906-926, July.
    8. Lanne, Markku & Saikkonen, Pentti, 2002. "Threshold Autoregressions for Strongly Autocorrelated Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 282-289, April.
    9. Jansen, Eilev S & Terasvirta, Timo, 1996. "Testing Parameter Constancy and Super Exogeneity in Econometric Equations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 735-763, November.
    10. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
    11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    12. Kozicki, Sharon & Tinsley, P. A., 2001. "Shifting endpoints in the term structure of interest rates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 613-652, June.
    13. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    14. Anna Cieslak & Pavol Povala, 2015. "Expected Returns in Treasury Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 28(10), pages 2859-2901.
    15. Jan Willem van den End, 2011. "Statistical evidence on the mean reversion of interest rates," DNB Working Papers 284, Netherlands Central Bank, Research Department.
    16. Siklos, Pierre L & Wohar, Mark E, 1997. "Convergence in Interest Rates and Inflation Rates across Countries and over Time," Review of International Economics, Wiley Blackwell, vol. 5(1), pages 129-141, February.
    17. Basma Bekdache & Christopher F. Baum, 1999. "A re-evaluation of empirical tests of the Fisher hypothesis," Computing in Economics and Finance 1999 944, Society for Computational Economics, revised 18 Sep 2000.
    18. JoÃo Caldeira & Hudson Torrent, 2017. "Forecasting the US Term Structure of Interest Rates Using Nonparametric Functional Data Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 56-73, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Berninger & Almond Stocker & David Rugamer, 2020. "A Bayesian Time-Varying Autoregressive Model for Improved Short- and Long-Term Prediction," Papers 2006.05750, arXiv.org, revised Feb 2021.
    2. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    3. Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2016. "The term structure of expectations and bond yields," Staff Reports 775, Federal Reserve Bank of New York.
    4. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    5. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.
    6. Carlo A. Favero & Arie E. Gozluklu & Haoxi Yang, 2016. "Demographics and the Behavior of Interest Rates," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(4), pages 732-776, November.
    7. Timo Teräsvirta, 2017. "Nonlinear models in macroeconometrics," CREATES Research Papers 2017-32, Department of Economics and Business Economics, Aarhus University.
    8. Glenn D. Rudebusch, 2010. "Macro‐Finance Models Of Interest Rates And The Economy," Manchester School, University of Manchester, vol. 78(s1), pages 25-52, September.
    9. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Shuo Cao, 2018. "Learning about Term Structure Predictability under Uncertainty," GRU Working Paper Series GRU_2018_006, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    11. Andr? Kurmann & Christopher Otrok, 2013. "News Shocks and the Slope of the Term Structure of Interest Rates," American Economic Review, American Economic Association, vol. 103(6), pages 2612-2632, October.
    12. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    13. Michael D. Bauer, 2018. "Restrictions on Risk Prices in Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 196-211, April.
    14. Malik, Sheheryar & Meldrum, Andrew, 2016. "Evaluating the robustness of UK term structure decompositions using linear regression methods," Journal of Banking & Finance, Elsevier, vol. 67(C), pages 85-102.
    15. Andrew Atkeson & Patrick J. Kehoe, 2009. "On the Need for a New Approach to Analyzing Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 2008, Volume 23, pages 389-425, National Bureau of Economic Research, Inc.
    16. Jiazi Chen & Zhiwu Hong & Linlin Niu, 2022. "Forecasting Interest Rates with Shifting Endpoints: The Role of the Demographic Age Structure," Working Papers 2022-06-25, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    17. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    18. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.
    19. S. Boragan Aruoba & Francis X. Diebold & Glenn D. Rudebusch, 2003. "The macroeconomy and the yield curve: a nonstructural analysis," Working Paper Series 2003-18, Federal Reserve Bank of San Francisco.
    20. Monika Piazzesi & Martin Schneider, 2007. "Equilibrium Yield Curves," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 389-472, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:1:p:181-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.