Forecasting the US Term Structure of Interest Rates Using Nonparametric Functional Data Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christoph Berninger & Almond Stöcker & David Rügamer, 2022. "A Bayesian time‐varying autoregressive model for improved short‐term and long‐term prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 181-200, January.
- Eppelsheimer, Johann & Jahn, Elke J. & Rust, Christoph, 2022. "The spatial decay of human capital externalities - A functional regression approach with precise geo-referenced data," Regional Science and Urban Economics, Elsevier, vol. 95(C).
- João Frois Caldeira & Rangan Gupta & Muhammad Tahir Suleman & Hudson S. Torrent, 2021.
"Forecasting the Term Structure of Interest Rates of the BRICS: Evidence from a Nonparametric Functional Data Analysis,"
Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4312-4329, December.
- Joao F. Caldeira & Rangan Gupta & Tahir Suleman & Hudson S. Torrent, 2019. "Forecasting the Term Structure of Interest Rates of the BRICS: Evidence from a Nonparametric Functional Data Analysis," Working Papers 201911, University of Pretoria, Department of Economics.
- João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020.
"Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?,"
Mathematics, MDPI, vol. 8(11), pages 1-16, November.
- Joao F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Working Papers 202087, University of Pretoria, Department of Economics.
- Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:36:y:2017:i:1:p:56-73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.