IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i7p1274-1290.html
   My bibliography  Save this article

Prediction of remaining time on site for e‐commerce users: A SOM and long short‐term memory study

Author

Listed:
  • Ling‐Jing Kao
  • Chih‐Chou Chiu
  • Hung‐Jui Wang
  • Chang Yu Ko

Abstract

With the development of information technology, online transactions and e‐commerce are gradually replacing conventional consumption patterns. To obtain a competitive advantage, industries proactively engage in digital transformations and the management of e‐commerce platforms. Faced with changes in market patterns, e‐commerce channels and online advertising firms hope to extend users' website browsing duration/time on site to enhance the effects of product promotion and the likelihood of advertisement clicks. The greatest challenge in predicting time on site is that clickstream data are not mutually independent, and short‐, mid‐, and long‐term data may intervene in a time series. Such timing dependence increases difficulty of capturing or learning the characteristics of website users for ordinary prediction models and leads to confusion and deviation during model construction. Accordingly, this study proposed a prediction method integrating self‐organizing map (SOM) and long short‐term memory (LSTM). The SOM method was initially applied to categorize website members into groups based on similarities in browsing behavior, and the LSTM prediction model was subsequently developed using the webpage browsing data of each group. The performance of the proposed method is evaluated by comparing the prediction with the results of three competing approaches (SOM with support vector regression, SOM with multilayer perceptron, and single LSTM) on the clickstream data provided by a leading online retailer specializing in selling skin care and cosmetics products in Taiwan. The Wilcoxon signed‐rank test validated the proposed SOM‐LSTM model outperforms competing approaches in remaining time‐on‐site prediction. This study serves as a first attempt to systematically predict remaining time on site for e‐commerce users in terms of empirically verifying a hybrid approach which integrates SOM and LSTM techniques.

Suggested Citation

  • Ling‐Jing Kao & Chih‐Chou Chiu & Hung‐Jui Wang & Chang Yu Ko, 2021. "Prediction of remaining time on site for e‐commerce users: A SOM and long short‐term memory study," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1274-1290, November.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1274-1290
    DOI: 10.1002/for.2771
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2771
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. Bucklin, Randolph E. & Sismeiro, Catarina, 2009. "Click Here for Internet Insight: Advances in Clickstream Data Analysis in Marketing," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 35-48.
    3. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    4. Pollock, Andrew C. & Macaulay, Alex & Thomson, Mary E. & Onkal, Dilek, 2005. "Performance evaluation of judgemental directional exchange rate predictions," International Journal of Forecasting, Elsevier, vol. 21(3), pages 473-489.
    5. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    6. P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
    7. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Wang & Tuo Shi & Xumeng Zhang & Jinsong Wei & Jian Lu & Jiaxue Zhu & Zuheng Wu & Qi Liu & Ming Liu, 2022. "Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrera, Carlos R., 2010. "Redes neuronales para predecir el tipo de cambio diario," Working Papers 2010-001, Banco Central de Reserva del Perú.
    2. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    4. Kris J. Ferreira & Sunanda Parthasarathy & Shreyas Sekar, 2022. "Learning to Rank an Assortment of Products," Management Science, INFORMS, vol. 68(3), pages 1828-1848, March.
    5. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    6. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    7. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    8. repec:hum:wpaper:sfb649dp2008-017 is not listed on IDEAS
    9. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    10. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    11. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    12. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    13. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    14. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    15. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    16. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," IREA Working Papers 201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
    17. Vanhala, Mika & Lu, Chien & Peltonen, Jaakko & Sundqvist, Sanna & Nummenmaa, Jyrki & Järvelin, Kalervo, 2020. "The usage of large data sets in online consumer behaviour: A bibliometric and computational text-mining–driven analysis of previous research," Journal of Business Research, Elsevier, vol. 106(C), pages 46-59.
    18. Clements, Adam & Preve, Daniel P.A., 2021. "A Practical Guide to harnessing the HAR volatility model," Journal of Banking & Finance, Elsevier, vol. 133(C).
    19. Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
    20. Schröder, Nadine & Falke, Andreas & Hruschka, Harald & Reutterer, Thomas, 2019. "Analyzing the Browsing Basket: A Latent Interests-Based Segmentation Tool," Journal of Interactive Marketing, Elsevier, vol. 47(C), pages 181-197.
    21. Robert H. McGuckin & Ataman Ozyildirim & Victor Zarnowitz, 2000. "The Composite Index of Leading Economic Indicators: How to Make it More Timely," Economics Program Working Papers 00-04, The Conference Board, Economics Program.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1274-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.