IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i7p1274-1290.html
   My bibliography  Save this article

Prediction of remaining time on site for e‐commerce users: A SOM and long short‐term memory study

Author

Listed:
  • Ling‐Jing Kao
  • Chih‐Chou Chiu
  • Hung‐Jui Wang
  • Chang Yu Ko

Abstract

With the development of information technology, online transactions and e‐commerce are gradually replacing conventional consumption patterns. To obtain a competitive advantage, industries proactively engage in digital transformations and the management of e‐commerce platforms. Faced with changes in market patterns, e‐commerce channels and online advertising firms hope to extend users' website browsing duration/time on site to enhance the effects of product promotion and the likelihood of advertisement clicks. The greatest challenge in predicting time on site is that clickstream data are not mutually independent, and short‐, mid‐, and long‐term data may intervene in a time series. Such timing dependence increases difficulty of capturing or learning the characteristics of website users for ordinary prediction models and leads to confusion and deviation during model construction. Accordingly, this study proposed a prediction method integrating self‐organizing map (SOM) and long short‐term memory (LSTM). The SOM method was initially applied to categorize website members into groups based on similarities in browsing behavior, and the LSTM prediction model was subsequently developed using the webpage browsing data of each group. The performance of the proposed method is evaluated by comparing the prediction with the results of three competing approaches (SOM with support vector regression, SOM with multilayer perceptron, and single LSTM) on the clickstream data provided by a leading online retailer specializing in selling skin care and cosmetics products in Taiwan. The Wilcoxon signed‐rank test validated the proposed SOM‐LSTM model outperforms competing approaches in remaining time‐on‐site prediction. This study serves as a first attempt to systematically predict remaining time on site for e‐commerce users in terms of empirically verifying a hybrid approach which integrates SOM and LSTM techniques.

Suggested Citation

  • Ling‐Jing Kao & Chih‐Chou Chiu & Hung‐Jui Wang & Chang Yu Ko, 2021. "Prediction of remaining time on site for e‐commerce users: A SOM and long short‐term memory study," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1274-1290, November.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1274-1290
    DOI: 10.1002/for.2771
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2771
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. Bucklin, Randolph E. & Sismeiro, Catarina, 2009. "Click Here for Internet Insight: Advances in Clickstream Data Analysis in Marketing," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 35-48.
    3. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    4. Pollock, Andrew C. & Macaulay, Alex & Thomson, Mary E. & Onkal, Dilek, 2005. "Performance evaluation of judgemental directional exchange rate predictions," International Journal of Forecasting, Elsevier, vol. 21(3), pages 473-489.
    5. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    6. P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
    7. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Wang & Tuo Shi & Xumeng Zhang & Jinsong Wei & Jian Lu & Jiaxue Zhu & Zuheng Wu & Qi Liu & Ming Liu, 2022. "Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrera, Carlos R., 2010. "Redes neuronales para predecir el tipo de cambio diario," Working Papers 2010-001, Banco Central de Reserva del Perú.
    2. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    4. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    5. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    6. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
    7. Kris J. Ferreira & Sunanda Parthasarathy & Shreyas Sekar, 2022. "Learning to Rank an Assortment of Products," Management Science, INFORMS, vol. 68(3), pages 1828-1848, March.
    8. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    9. repec:lan:wpaper:470 is not listed on IDEAS
    10. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    11. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    12. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    13. Imad Moosa & Kelly Burns, 2016. "The random walk as a forecasting benchmark: drift or no drift?," Applied Economics, Taylor & Francis Journals, vol. 48(43), pages 4131-4142, September.
    14. repec:hum:wpaper:sfb649dp2008-017 is not listed on IDEAS
    15. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    16. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
    17. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    18. Pallant, Jason I. & Danaher, Peter J. & Sands, Sean J. & Danaher, Tracey S., 2017. "An empirical analysis of factors that influence retail website visit types," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 62-70.
    19. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    20. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    21. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    22. Viviana Fernandez, 2008. "Traditional versus novel forecasting techniques: how much do we gain?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 637-648.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1274-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.