IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i7p1166-1178.html
   My bibliography  Save this article

The industrial asymmetry of the stock price prediction with investor sentiment: Based on the comparison of predictive effects with SVR

Author

Listed:
  • Zhenni Jin
  • Kun Guo
  • Yi Sun
  • Lin Lai
  • Zhewen Liao

Abstract

As a representative emerging financial market, the Chinese stock market is more prone to volatility because of investor sentiment. It is reasonable to use efficient predictive methods to analyze the influence of investor sentiment on stock price forecasting. This paper conducts a comparative study about the predictive performance of artificial neural network, support vector regression (SVR) and autoregressive integrated moving average and selects SVR to study the asymmetry effect of investor sentiment on different industry index predictions. After studying the relevant financial indicators, the results divide the Shenwan first‐class industries into two types and show that the industries affected by investor sentiment are composed of young companies with high growth and high operative pressure and there are a great number of investment bubbles in those companies.

Suggested Citation

  • Zhenni Jin & Kun Guo & Yi Sun & Lin Lai & Zhewen Liao, 2020. "The industrial asymmetry of the stock price prediction with investor sentiment: Based on the comparison of predictive effects with SVR," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1166-1178, November.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:7:p:1166-1178
    DOI: 10.1002/for.2681
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2681
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    2. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    3. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    4. repec:bla:jfinan:v:53:y:1998:i:6:p:1839-1885 is not listed on IDEAS
    5. Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
    6. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    7. Basu, S, 1977. "Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis," Journal of Finance, American Finance Association, vol. 32(3), pages 663-682, June.
    8. Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    11. Frugier, Alain, 2016. "Returns, volatility and investor sentiment: Evidence from European stock markets," Research in International Business and Finance, Elsevier, vol. 38(C), pages 45-55.
    12. Cornell, Brad & Landsman, Wayne R. & Stubben, Stephen R., 2017. "Accounting Information, Investor Sentiment, and Market Pricing," Journal of Law, Finance, and Accounting, now publishers, vol. 2(2), pages 325-345, November.
    13. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juanjuan Wang & Shujie Zhou & Wentong Liu & Lin Jiang, 2024. "An ensemble model for stock index prediction based on media attention and emotional causal inference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1998-2020, September.
    2. Cai, Yi & Tang, Zhenpeng & Chen, Ying, 2024. "Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    3. Blajer-Gołębiewska, Anna & Honecker, Lukas & Nowak, Sabina, 2024. "Investor sentiment response to COVID-19 outbreak-related news: A sectoral analysis of US firms," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    4. Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
    5. Jiawen Luo & Oguzhan Cepni & Riza Demirer & Rangan Gupta, 2022. "Forecasting Multivariate Volatilities with Exogenous Predictors: An Application to Industry Diversification Strategies," Working Papers 202258, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
    2. Palomino, Frederic & Renneboog, Luc & Zhang, Chendi, 2009. "Information salience, investor sentiment, and stock returns: The case of British soccer betting," Journal of Corporate Finance, Elsevier, vol. 15(3), pages 368-387, June.
    3. Chen, Weihua & Mamon, Rogemar & Xiong, Heng & Zeng, Pingping, 2024. "Does uncertainty affect the limits of arbitrage? Evidence from the U.S. stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    4. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    5. Han, Xing & Li, Youwei, 2017. "Can investor sentiment be a momentum time-series predictor? Evidence from China," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 212-239.
    6. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    7. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    8. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    9. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    10. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Gonzalez-Fernandez, Marcos & Miffre, Joelle, 2020. "Fear of hazards in commodity futures markets," Journal of Banking & Finance, Elsevier, vol. 119(C).
    11. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    12. Ballinari, Daniele & Audrino, Francesco & Sigrist, Fabio, 2022. "When does attention matter? The effect of investor attention on stock market volatility around news releases," International Review of Financial Analysis, Elsevier, vol. 82(C).
    13. Rakovská, Zuzana, 2021. "Composite survey sentiment as a predictor of future market returns: Evidence for German equity indices," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 473-495.
    14. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    15. Roland Füss & Massimo Guidolin & Christian Koeppel, 2019. "Sentiment Risk Premia In The Cross-Section of Global Equity," Working Papers on Finance 1913, University of St. Gallen, School of Finance, revised May 2020.
    16. Roland Fuess & Massimo Guidolin & Christian Koeppel, 2019. "Sentiment Risk Premia in the Cross-Section of Global Equity and Currency Returns," BAFFI CAREFIN Working Papers 19116, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    17. Khasawneh, Maher & McMillan, David G. & Kambouroudis, Dimos, 2024. "Left-tail risk and UK stock return predictability: Underreaction, overreaction, and arbitrage difficulties," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    18. Hou, Yang & Meng, Jiayin, 2018. "The momentum effect in the Chinese market and its relationship with the simultaneous and the lagged investor sentiment," MPRA Paper 94838, University Library of Munich, Germany.
    19. Li, Jinfang, 2014. "Multi-period sentiment asset pricing model with information," International Review of Economics & Finance, Elsevier, vol. 34(C), pages 118-130.
    20. Miwa, Kotaro & Ueda, Kazuhiro, 2016. "Analysts’ preference for growth investing and vulnerability to market-wide sentiment," The Quarterly Review of Economics and Finance, Elsevier, vol. 61(C), pages 40-52.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:7:p:1166-1178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.