IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i6p986-999.html
   My bibliography  Save this article

A deep residual compensation extreme learning machine and applications

Author

Listed:
  • Yinghao Chen
  • Xiaoliang Xie
  • Tianle Zhang
  • Jiaxian Bai
  • Muzhou Hou

Abstract

The extreme learning machine (ELM) is a type of machine learning algorithm for training a single hidden layer feedforward neural network. Randomly initializing the weight between the input layer and the hidden layer and the threshold of each hidden layer neuron, the weight matrix of the hidden layer can be calculated by the least squares method. The efficient learning ability in ELM makes it widely applicable in classification, regression, and more. However, owing to some unutilized information in the residual, there are relatively huge prediction errors involving ELM. In this paper, a deep residual compensation extreme learning machine model (DRC‐ELM) of multilayer structures applied to regression is presented. The first layer is the basic ELM layer, which helps in obtaining an approximation of the objective function by learning the characteristics of the sample. The other layers are the residual compensation layers in which the learned residual is corrected layer by layer to the predicted value obtained in the previous layer by constructing a feature mapping between the input layer and the output of the upper layer. This model is applied to two practical problems: gold price forecasting and airfoil self‐noise prediction. We used the DRC‐ELM with 50, 100, and 200 residual compensation layers respectively for experiments, which show that DRC‐ELM does better in generalization and robustness than classical ELM, improved ELM models such as GA‐RELM and OS‐ELM, and other traditional machine learning algorithms such as support vector machine (SVM) and back‐propagation neural network (BPNN).

Suggested Citation

  • Yinghao Chen & Xiaoliang Xie & Tianle Zhang & Jiaxian Bai & Muzhou Hou, 2020. "A deep residual compensation extreme learning machine and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 986-999, September.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:6:p:986-999
    DOI: 10.1002/for.2663
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2663
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Argimiro Arratia & Alejandra Cabaña, 2013. "A Graphical Tool for Describing the Temporal Evolution of Clusters in Financial Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 213-231, February.
    2. Muzhou Hou & Tianle Zhang & Futian Weng & Mumtaz Ali & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2018. "Global Solar Radiation Prediction Using Hybrid Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 11(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    2. Weng, Futian & Zhang, Hongwei & Yang, Cai, 2021. "Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 73(C).
    3. Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    4. Yelin Wang & Ping Yang & Zan Song & Julien Chevallier & Qingtai Xiao, 2024. "Intelligent Prediction of Annual CO2 Emissions Under Data Decomposition Mode," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 711-740, February.
    5. He Jiang, 2023. "Forecasting global solar radiation using a robust regularization approach with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1989-2010, December.
    6. Pei Du & Jianzhou Wang & Wendong Yang & Tong Niu, 2022. "A novel hybrid fine particulate matter (PM2.5) forecasting and its further application system: Case studies in China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 64-85, January.
    7. Zi‐yu Chen & Fei Xiao & Xiao‐kang Wang & Min‐hui Deng & Jian‐qiang Wang & Jun‐Bo Li, 2022. "Stochastic configuration network based on improved whale optimization algorithm for nonstationary time series prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1458-1482, November.
    8. Ying Wang & Jianzhou Wang & Hongmin Li & Hufang Yang & Zhiwu Li, 2022. "Multi‐step air quality index forecasting via data preprocessing, sequence reconstruction, and improved multi‐objective optimization algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1483-1511, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    2. Preeti Verma & Sunil Patil, 2023. "A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images," Annals of Data Science, Springer, vol. 10(4), pages 907-932, August.
    3. Meysam Alizamir & Kaywan Othman Ahmed & Jalal Shiri & Ahmad Fakheri Fard & Sungwon Kim & Salim Heddam & Ozgur Kisi, 2023. "A New Insight for Daily Solar Radiation Prediction by Meteorological Data Using an Advanced Artificial Intelligence Algorithm: Deep Extreme Learning Machine Integrated with Variational Mode Decomposit," Sustainability, MDPI, vol. 15(14), pages 1-35, July.
    4. Hai Tao & Isa Ebtehaj & Hossein Bonakdari & Salim Heddam & Cyril Voyant & Nadhir Al-Ansari & Ravinesh Deo & Zaher Mundher Yaseen, 2019. "Designing a New Data Intelligence Model for Global Solar Radiation Prediction: Application of Multivariate Modeling Scheme," Energies, MDPI, vol. 12(7), pages 1-24, April.
    5. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:6:p:986-999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.