IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i3p438-448.html
   My bibliography  Save this article

State‐space models for predicting IBNR reserve in row‐wise ordered runoff triangles: Calendar year IBNR reserves & tail effects

Author

Listed:
  • Leonardo Costa
  • Adrian Pizzinga

Abstract

The issue of modeling and forecasting IBNR (incurred but not reported) actuarial reserve under Kalman filter techniques and extensions, using data arranged in a runoff triangle, is a frequent theme in the literature. One quite recent approach is to order the runoff triangle under a row‐wise fashion and use linear state‐space models for the resulting data set. To allow new possibilities for short‐term IBNR reserves as well as to mitigate insolvency risk, in this paper we extend such a state‐space method by: (i) a calendar year IBNR reserve prediction; and (ii) a tail effect for the row‐wise ordered triangle. The extension is implemented with a real runoff triangle and compared with some traditional IBNR predictors. Empirical results indicate that the approach of this paper outperforms the competing methods in terms of out‐of‐sample comparisons and gives more conservative IBNR reserves than the original state‐space method.

Suggested Citation

  • Leonardo Costa & Adrian Pizzinga, 2020. "State‐space models for predicting IBNR reserve in row‐wise ordered runoff triangles: Calendar year IBNR reserves & tail effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 438-448, April.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:3:p:438-448
    DOI: 10.1002/for.2638
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2638
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Piet de Jong, 2006. "Forecasting Runoff Triangles," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 28-38.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, December.
    4. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
    5. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    6. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, October.
    7. Yves L. Grize, 2015. "Applications of Statistics in the Field of General Insurance: An Overview," International Statistical Review, International Statistical Institute, vol. 83(1), pages 135-159, April.
    8. Ioannis Ntzoufras & Petros Dellaportas, 2002. "Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(1), pages 113-125.
    9. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    10. Mack, Thomas, 1994. "Which stochastic model is underlying the chain ladder method?," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 133-138, December.
    11. Atherino, Rodrigo & Pizzinga, Adrian & Fernandes, Cristiano, 2010. "A Row-Wise Stacking of the Runoff Triangle: State Space Alternatives for IBNR Reserve Prediction," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 917-946, November.
    12. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    13. Verrall, R. J., 2000. "An investigation into stochastic claims reserving models and the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 91-99, February.
    14. Leonardo Costa & Adrian Pizzinga & Rodrigo Atherino, 2016. "Modeling and predicting IBNR reserve: extended chain ladder and heteroscedastic regression analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 847-870, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nataliya Chukhrova & Arne Johannssen, 2021. "Kalman Filter Learning Algorithms and State Space Representations for Stochastic Claims Reserving," Risks, MDPI, vol. 9(6), pages 1-5, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    3. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
    4. Nataliya Chukhrova & Arne Johannssen, 2021. "Stochastic Claims Reserving Methods with State Space Representations: A Review," Risks, MDPI, vol. 9(11), pages 1-55, November.
    5. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    6. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.
    7. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    8. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    9. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    10. Adrian Pizzinga & Marcelo Fernandes, 2021. "Extensions to the invariance property of maximum likelihood estimation for affine‐transformed state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 355-371, May.
    11. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    12. Taylor, Greg, 2021. "A special Tweedie sub-family with application to loss reserving prediction error," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 262-288.
    13. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    14. Paulo J. R. Pinheiro & João Manuel Andrade e Silva & Maria De Lourdes Centeno, 2003. "Bootstrap Methodology in Claim Reserving," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 701-714, December.
    15. Pešta, Michal & Hudecová, Šárka, 2012. "Asymptotic consistency and inconsistency of the chain ladder," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 472-479.
    16. Yves L. Grize, 2015. "Applications of Statistics in the Field of General Insurance: An Overview," International Statistical Review, International Statistical Institute, vol. 83(1), pages 135-159, April.
    17. Nataliya Chukhrova & Arne Johannssen, 2021. "Kalman Filter Learning Algorithms and State Space Representations for Stochastic Claims Reserving," Risks, MDPI, vol. 9(6), pages 1-5, June.
    18. Gao, Guangyuan & Meng, Shengwang & Shi, Yanlin, 2021. "Dispersion modelling of outstanding claims with double Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 572-586.
    19. Kunkler, Michael, 2006. "Modelling negatives in stochastic reserving models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 540-555, June.
    20. D Kuang & Bent Nielsen & J P Nielsen, 2013. "The Geometric Chain-Ladder," Economics Papers 2013-W11, Economics Group, Nuffield College, University of Oxford.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:3:p:438-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.