IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i3p556-572.html
   My bibliography  Save this article

Semiparametric Smooth Coefficient Stochastic Frontier Model With Panel Data

Author

Listed:
  • Feng Yao
  • Fan Zhang
  • Subal C. Kumbhakar

Abstract

We investigate the semiparametric smooth coefficient stochastic frontier model for panel data in which the distribution of the composite error term is assumed to be of known form but depends on some environmental variables. We propose multi-step estimators for the smooth coefficient functions as well as the parameters of the distribution of the composite error term and obtain their asymptotic properties. The Monte Carlo study demonstrates that the proposed estimators perform well in finite samples. We also consider an application and perform model specification test, construct confidence intervals, and estimate efficiency scores that depend on some environmental variables. The application uses a panel data on 451 large U.S. firms to explore the effects of computerization on productivity. Results show that two popular parametric models used in the stochastic frontier literature are likely to be misspecified. Compared with the parametric estimates, our semiparametric model shows a positive and larger overall effect of computer capital on the productivity. The efficiency levels, however, were not much different among the models. Supplementary materials for this article are available online.

Suggested Citation

  • Feng Yao & Fan Zhang & Subal C. Kumbhakar, 2019. "Semiparametric Smooth Coefficient Stochastic Frontier Model With Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 556-572, July.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:556-572
    DOI: 10.1080/07350015.2017.1390467
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2017.1390467
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2017.1390467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
    2. Oleg Badunenko & Daniel J. Henderson, 2024. "Production analysis with asymmetric noise," Journal of Productivity Analysis, Springer, vol. 61(1), pages 1-18, February.
    3. Baležentis, Tomas & Sun, Kai, 2020. "Measurement of technical inefficiency and total factor productivity growth: A semiparametric stochastic input distance frontier approach and the case of Lithuanian dairy farms," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1174-1188.
    4. Cheng, Ming-Yen & Wang, Shouxia & Xia, Lucy & Zhang, Xibin, 2024. "Testing specification of distribution in stochastic frontier analysis," Journal of Econometrics, Elsevier, vol. 239(2).
    5. Kai Sun & Ruhul Salim, 2020. "A semiparametric stochastic input distance frontier model with application to the Indonesian banking industry," Journal of Productivity Analysis, Springer, vol. 54(2), pages 139-156, December.
    6. Taining Wang & Feng Yao & Subal C. Kumbhakar, 2024. "A flexible stochastic production frontier model with panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 564-588, June.
    7. Fan Zhang & Joshua Hall & Feng Yao, 2018. "Does Economic Freedom Affect The Production Frontier? A Semiparametric Approach With Panel Data," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1380-1395, April.
    8. Lopez Gomez, Daniel & Parmeter, Christopher F., 2020. "Smooth coefficient estimation of stochastic frontier models," Economics Letters, Elsevier, vol. 193(C).
    9. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    10. Rubo Zhao & Yixiang Tian & Ao Lei & Francis Boadu & Ze Ren, 2019. "The Effect of Local Government Debt on Regional Economic Growth in China: A Nonlinear Relationship Approach," Sustainability, MDPI, vol. 11(11), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:556-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.