IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v59y1997i3p639-652.html
   My bibliography  Save this article

Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap

Author

Listed:
  • Arthur B. Yeh
  • Kesar Singh

Abstract

We propose and study the bootstrap confidence regions for multivariate parameters based on Tukey’s depth. The bootstrap is based on the normalized or Studentized statistic formed from an independent and identically distributed random sample obtained from some unknown distribution in Rq. The bootstrap points are deleted on the basis of Tukey’s depth until the desired confidence level is reached. The proposed confidence regions are shown to be second order balanced in the context discussed by Beran. We also study the asymptotic consistency of Tukey’s depth‐based bootstrap confidence regions. The applicability of the method proposed is demonstrated in a simulation study.

Suggested Citation

  • Arthur B. Yeh & Kesar Singh, 1997. "Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 639-652.
  • Handle: RePEc:bla:jorssb:v:59:y:1997:i:3:p:639-652
    DOI: 10.1111/1467-9868.00088
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00088
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
    2. Chau, Van Vinh & Ombao, Hernando & von Sachs, Rainer, 2017. "Data depth and rank-based tests for covariance and spectral density matrices," LIDAM Discussion Papers ISBA 2017019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Einmahl, J.H.J. & Li, Jun & Liu, Regina, 2015. "Bridging Centrality and Extremity : Refining Empirical Data Depth using Extreme Value Statistics," Discussion Paper 2015-020, Tilburg University, Center for Economic Research.
    4. Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2018. "Prediction Regions for Interval-valued Time Series," Working Papers 201817, University of California at Riverside, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:59:y:1997:i:3:p:639-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.