IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v31y2016i2p420-449.html
   My bibliography  Save this article

Identifying the Independent Sources of Consumption Variation

Author

Listed:
  • Matteo Barigozzi
  • Alessio Moneta

Abstract

By representing a system of budget shares as an approximate factor model we determine its rank, i.e. the number of common functional forms, or factors and we estimate a base of the factor space by means of approximate principal components. We assume that the extracted factors span the same space of basic Engel curves representing the fundamental forces driving consumers’ behaviour. We identify these curves by imposing statistical independence and by studying their dependence on total expenditure using local linear regressions. We prove consistency of the estimates. Using data from the U.K. Family Expenditure Survey from 1977 to 2006, we find strong evidence of two common factors and mixed evidence of a third factor. These are identified as decreasing, increasing, and almost constant Engel curves. The household consumption behaviour is therefore driven by two factors respectively related to necessities (e.g. food), luxuries (e.g. vehicles), and in some cases by a third factor related to goods to which is allocated the same percentage of total budget both by rich and poor households (e.g. housing).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Matteo Barigozzi & Alessio Moneta, 2016. "Identifying the Independent Sources of Consumption Variation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 420-449, March.
  • Handle: RePEc:wly:japmet:v:31:y:2016:i:2:p:420-449
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    4. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    5. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    6. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    7. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j01si09a2 is not listed on IDEAS
    8. Foellmi, Reto & Zweimüller, Josef, 2008. "Structural change, Engel's consumption cycles and Kaldor's facts of economic growth," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1317-1328, October.
    9. Richard Blundell & Alan Duncan & Krishna Pendakur, 1998. "Semiparametric estimation and consumer demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 435-461.
    10. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    11. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    12. Andreas Chai & Alessio Moneta, 2010. "Retrospectives: Engel Curves," Journal of Economic Perspectives, American Economic Association, vol. 24(1), pages 225-240, Winter.
    13. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    14. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    15. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    16. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    17. Ulrich Witt, 2001. "special issue: Learning to consume - A theory of wants and the growth of demand," Journal of Evolutionary Economics, Springer, vol. 11(1), pages 23-36.
    18. Giorgio Fagiolo & Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2010. "On the distributional properties of household consumption expenditures: the case of Italy," Empirical Economics, Springer, vol. 38(3), pages 717-741, June.
    19. Arthur Lewbel, 2001. "Demand Systems with and without Errors," American Economic Review, American Economic Association, vol. 91(3), pages 611-618, June.
    20. Stephen G. Donald, 1997. "Inference Concerning the Number of Factors in a Multivariate Nonparametric Relationship," Econometrica, Econometric Society, vol. 65(1), pages 103-132, January.
    21. repec:hal:journl:peer-00844811 is not listed on IDEAS
    22. R. Aversi & G. Dosi & G. Fagiolo & M. Meacci & C. Olivetti, 1997. "Demand Dynamics With Socially Evolving Preferences," Working Papers ir97081, International Institute for Applied Systems Analysis.
    23. Arthur Lewbel, 2003. "A rational rank four demand system," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 127-135.
    24. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    25. Stoker, Thomas M, 1993. "Empirical Approaches to the Problem of Aggregation Over Individuals," Journal of Economic Literature, American Economic Association, vol. 31(4), pages 1827-1874, December.
    26. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    27. James Banks & Richard Blundell & Arthur Lewbel, 1997. "Quadratic Engel Curves And Consumer Demand," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 527-539, November.
    28. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    29. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j01si09a2 is not listed on IDEAS
    30. Aversi, Roberta, et al, 1999. "Demand Dyanmics with Socially Evolving Preferences," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 8(2), pages 353-408, June.
    31. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommaso Ciarli & André Lorentz & Marco Valente & Maria Savona, 2019. "Structural changes and growth regimes," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 119-176, March.
    2. Christophe Faugère, 2021. "Connectalism: A new paradigm for human choice," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(6), pages 866-889, November.
    3. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    4. Liqiong Chen & Antonio F. Galvao & Suyong Song, 2021. "Quantile Regression with Generated Regressors," Econometrics, MDPI, vol. 9(2), pages 1-35, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    2. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    3. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    6. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    7. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    8. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    9. Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
    10. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    11. Andreas Chai & Alessio Moneta, 2013. "Back to Engel? Some Evidence for the Hierarchy of Needs," Economic Complexity and Evolution, in: Andreas Pyka & Esben Sloth Andersen (ed.), Long Term Economic Development, edition 127, pages 33-59, Springer.
    12. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    13. Andreas Chai & Nicholas Rohde & Jacques Silber, 2015. "Measuring The Diversity Of Household Spending Patterns," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 423-440, July.
    14. Hallin, Marc & Lippi, Marco, 2013. "Factor models in high-dimensional time series—A time-domain approach," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2678-2695.
    15. Takashi Unayama, 2006. "The Engel curve for alcohol and the rank of demand systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 1019-1038, November.
    16. Mette Christensen, 2007. "Integrability of Demand Accounting for Unobservable Heterogeneity: A Test on Panel Data," Economics Discussion Paper Series 0713, Economics, The University of Manchester.
    17. Arthur Lewbel & Krishna Pendakur, 2009. "Tricks with Hicks: The EASI Demand System," American Economic Review, American Economic Association, vol. 99(3), pages 827-863, June.
    18. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    19. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    20. Gonzalo Camba-Mendez & George Kapetanios, 2005. "Statistical Tests of the Rank of a Matrix and Their Applications in Econometric Modelling," Working Papers 541, Queen Mary University of London, School of Economics and Finance.

    More about this item

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:31:y:2016:i:2:p:420-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.