IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v8y2018i5p954-977.html
   My bibliography  Save this article

Potential evaluation of CO2 EOR and storage in oilfields of the Pearl River Mouth Basin, northern South China Sea

Author

Listed:
  • Pengchun Li
  • Xueyan Liu
  • Jiemin Lu
  • Di Zhou
  • Susan D. Hovorka
  • Gang Hu
  • Xi Liang

Abstract

The Pearl River Mouth Basin (PRMB) is the largest petroliferous sedimentary basin in the northern South China Sea. It is near the coastal economic zone of Guangdong province where a large number of CO2 emission sources are located. Carbon dioxide enhanced oil recovery (EOR) represents an opportunity to promote offshore carbon capture, utilization and storage (CCUS) deployment because CO2 flooding offers a method to recover additional oil while simultaneously sequestering anthropogenic CO2. In this paper, a comprehensive multiparameter ‘quick look’ and potential evaluation method was proposed to screen and assess offshore CO2 EOR potential. A screening scheme for the CO2 EOR potential of reservoirs of the PRMB was also proposed using additional parameters, including reservoir properties and engineering design incorporating a dimensionless screen model and calculations. The results show that the suitability of reservoirs for CO2 EOR and storage varies and could be categorized into four priority grades. Approximately 30 of the oil reservoirs from 10 oilfields were preferentially identified by applying the screening method for reservoirs with predicted higher ultimate recovery potentials. It was predicted that 3227 × 104 t of additional oil could be produced from these reservoirs and that 3617 × 104 t of CO2 could be simultaneously stored. The sensitivity analysis shows that injection pressure (Pinj) would be more sensitive than production pressure (Pp) and well distance (L) on the CO2 EOR and storage efficiency, indicating that EOR operations with higher Pinj may improve oil production. The prospective reservoirs include those candidates with suitability grades of I and II from the Lufeng (LF) and Huizhou (HZ) oilfield clusters, where 1164 × 104 t of additional oil could be produced and 1464 × 104 t of CO2 stored with CO2 EOR. © 2018 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Pengchun Li & Xueyan Liu & Jiemin Lu & Di Zhou & Susan D. Hovorka & Gang Hu & Xi Liang, 2018. "Potential evaluation of CO2 EOR and storage in oilfields of the Pearl River Mouth Basin, northern South China Sea," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 954-977, October.
  • Handle: RePEc:wly:greenh:v:8:y:2018:i:5:p:954-977
    DOI: 10.1002/ghg.1808
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1808
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Compernolle, T. & Welkenhuysen, K. & Huisman, K. & Piessens, K. & Kort, P., 2017. "Off-shore enhanced oil recovery in the North Sea: The impact of price uncertainty on the investment decisions," Energy Policy, Elsevier, vol. 101(C), pages 123-137.
    2. Pan-Sang Kang & Jong-Se Lim & Chun Huh, 2016. "Screening Criteria and Considerations of Offshore Enhanced Oil Recovery," Energies, MDPI, vol. 9(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gwang Goo Lee & Sung-Won Ham, 2023. "Prediction of Carbon Price in EU-ETS Using a Geometric Brownian Motion Model and Its Application to Analyze the Economic Competitiveness of Carbon Capture and Storage," Energies, MDPI, vol. 16(17), pages 1-13, August.
    2. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    3. Aman Turakhanov & Albina Tsyshkova & Elena Mukhina & Evgeny Popov & Darya Kalacheva & Ekaterina Dvoretskaya & Anton Kasyanenko & Konstantin Prochukhan & Alexey Cheremisin, 2021. "Cyclic Subcritical Water Injection into Bazhenov Oil Shale: Geochemical and Petrophysical Properties Evolution Due to Hydrothermal Exposure," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Tine Compernolle & Kuno J. M. Huisman & Peter M. Kort & Maria Lavrutich & Cláudia Nunes & Jacco J. J. Thijssen, 2021. "Investment Decisions with Two-Factor Uncertainty," JRFM, MDPI, vol. 14(11), pages 1-17, November.
    5. Muhammad Ridhuan Tony Lim Abdullah & Saedah Siraj & Zulkipli Ghazali, 2021. "An ISM Approach for Managing Critical Stakeholder Issues Regarding Carbon Capture and Storage (CCS) Deployment in Developing Asian Countries," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    6. Jia-Yue Huang & Yun-Fei Cao & Hui-Ling Zhou & Hong Cao & Bao-Jun Tang & Nan Wang, 2018. "Optimal Investment Timing and Scale Choice of Overseas Oil Projects: A Real Option Approach," Energies, MDPI, vol. 11(11), pages 1-22, October.
    7. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    8. Wu, Xi & Wang, Yudong, 2021. "How does corporate investment react to oil prices changes? Evidence from China," Energy Economics, Elsevier, vol. 97(C).
    9. Thomas Aspinall & Adrian Gepp & Geoff Harris & Simone Kelly & Colette Southam & Bruce Vanstone, 2021. "Estimation of a term structure model of carbon prices through state space methods: The European Union emissions trading scheme," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(2), pages 3797-3819, June.
    10. Li, Li & Wang, Shuai & Wu, Jiaqi & Sun, Zhenqing, 2024. "Exploring the efficacy of renewable energy support policies in uncertain environments: A real options analysis," Energy Economics, Elsevier, vol. 132(C).
    11. Loïc Weerdt & Tine Compernolle & Verena Hagspiel & Peter Kort & Carlos Oliveira, 2022. "Stepwise Investment in Circular Plastics Under the Presence of Policy Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 413-443, October.
    12. Hanne Lamberts-Van Assche & Tine Compernolle, 2022. "Using Real Options Thinking to Value Investment Flexibility in Carbon Capture and Utilization Projects: A Review," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    13. Tian Zhao & Zhixin Liu, 2023. "Investment Timing Analysis of Hydrogen-Refueling Stations and the Case of China: Independent or Co-Operative Investment?," Energies, MDPI, vol. 16(13), pages 1-17, June.
    14. Lei Zhu & Xing Yao & Xian Zhang, 2020. "Evaluation of cooperative mitigation: captured carbon dioxide for enhanced oil recovery," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1261-1285, October.
    15. Alexey Dengaev & Vladimir Verbitsky & Olga Eremenko & Anna Novikova & Andrey Getalov & Boris Sargin, 2022. "Water-in-Oil Emulsions Separation Using a Controlled Multi-Frequency Acoustic Field at an Operating Facility," Energies, MDPI, vol. 15(17), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:8:y:2018:i:5:p:954-977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.