IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v14y2024i3p470-491.html
   My bibliography  Save this article

Spatial modeling of micro‐scale carbon dioxide sources and sinks in urban environments: A novel approach to quantify urban impacts on global warming

Author

Listed:
  • Loghman Khodakarami

Abstract

Urban environments play a significant role in global carbon emissions and sequestration, necessitating a comprehensive understanding of their spatial distribution. This study presents a micro‐scale spatial modeling framework to elucidate the complex interplay between CO2 sources and sinks within urban settings. Utilizing advanced geospatial analysis, remote sensing data, and geographically weighted regression (GWR) modeling techniques, we provide a detailed characterization of emission patterns and identify the spatial distribution of carbon dioxide sequestration. Employing the bottom‐up method and geographic information system techniques, we quantified carbon dioxide emissions in Isfahan City, Iran, attributing 81.68% to stationary combustion sources (residential, commercial, industrial, and power plant sectors) and 18.32% to mobile combustion sources (road‐rail transportation, and non‐road transportation [agricultural machinery]). To model carbon sequestration, we calculated tree biomass using allometric equations and estimated carbon sequestration per tree unit. Subsequently, we employed GWR to map the spatial distribution of carbon deposition across the city. The results revealed an annual carbon sequestration capacity of 7,704 tons, equivalent to storing 28,275 tons of CO2. Our findings highlight the substantial contribution of urban areas to greenhouse gas emissions and the potential of urban green spaces to mitigate these emissions. The spatial modeling framework developed in this study provides a valuable tool for urban planners to optimize carbon management strategies and promote sustainable urban development. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Loghman Khodakarami, 2024. "Spatial modeling of micro‐scale carbon dioxide sources and sinks in urban environments: A novel approach to quantify urban impacts on global warming," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 14(3), pages 470-491, June.
  • Handle: RePEc:wly:greenh:v:14:y:2024:i:3:p:470-491
    DOI: 10.1002/ghg.2273
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2273
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stacy‐ann Robinson, 2020. "Climate change adaptation in SIDS: A systematic review of the literature pre and post the IPCC Fifth Assessment Report," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    2. J. R. Petit & J. Jouzel & D. Raynaud & N. I. Barkov & J.-M. Barnola & I. Basile & M. Bender & J. Chappellaz & M. Davis & G. Delaygue & M. Delmotte & V. M. Kotlyakov & M. Legrand & V. Y. Lipenkov & C. , 1999. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica," Nature, Nature, vol. 399(6735), pages 429-436, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Jonathan Maitland Lauderdale, 2024. "Ocean iron cycle feedbacks decouple atmospheric CO2 from meridional overturning circulation changes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Puetz, Stephen J. & Prokoph, Andreas & Borchardt, Glenn & Mason, Edward W., 2014. "Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 55-75.
    4. Qing Ji & Xiaoping Pang & Xi Zhao, 2014. "A bibliometric analysis of research on Antarctica during 1993–2012," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1925-1939, December.
    5. Bruce R. Conard, 2013. "Some Challenges to Sustainability," Sustainability, MDPI, vol. 5(8), pages 1-14, August.
    6. Anne Willem Omta & Christopher L. Follett & Jonathan M. Lauderdale & Raffaele Ferrari, 2024. "Carbon isotope budget indicates biological disequilibrium dominated ocean carbon storage at the Last Glacial Maximum," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Rakhyun Kim & Brendan Mackey, 2014. "International environmental law as a complex adaptive system," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 14(1), pages 5-24, March.
    8. Zhengquan Yao & Xuefa Shi & Qiuzhen Yin & Samuel Jaccard & Yanguang Liu & Zhengtang Guo & Sergey A. Gorbarenko & Kunshan Wang & Tianyu Chen & Zhipeng Wu & Qingyun Nan & Jianjun Zou & Hongmin Wang & Ji, 2024. "Ice sheet and precession controlled subarctic Pacific productivity and upwelling over the last 550,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Dan Pangburn, 2015. "Influence of Carbon Dioxide on Average Global Temperature during the Phanerozoic Eon," Energy & Environment, , vol. 26(5), pages 841-845, September.
    10. Shani, Amir & Arad, Boaz, 2014. "Climate change and tourism: Time for environmental skepticism," Tourism Management, Elsevier, vol. 44(C), pages 82-85.
    11. Campos, Diógenes, 2014. "Macroscopic characterization of data sets by using the average absolute deviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 222-234.
    12. Akram, Fatima & Haq, Ikram ul & Aqeel, Amna & Ahmed, Zeeshan & Shah, Fatima Iftikhar, 2021. "Thermostable cellulases: Structure, catalytic mechanisms, directed evolution and industrial implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Julian Z Xue & Andre Costopoulos & Frederic Guichard, 2011. "Choosing Fitness-Enhancing Innovations Can Be Detrimental under Fluctuating Environments," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    14. Hui-Zhen Fu & Yuh-Shan Ho, 2016. "Highly cited Antarctic articles using Science Citation Index Expanded: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 337-357, October.
    15. Philip J. Lloyd, 2015. "An Estimate of the Centennial Variability of Global Temperatures," Energy & Environment, , vol. 26(3), pages 417-424, April.
    16. Gonzalo Edwards, 2008. "Climate Change An inconvenient maybe," Estudios de Economia, University of Chile, Department of Economics, vol. 35(1 Year 20), pages 5-17, June.
    17. Chengfei He & Zhengyu Liu & Bette L. Otto-Bliesner & Esther C. Brady & Chenyu Zhu & Robert Tomas & Sifan Gu & Jing Han & Yishuai Jin, 2021. "Deglacial variability of South China hydroclimate heavily contributed by autumn rainfall," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
    19. Muhammad Hammad Rasool & Maqsood Ahmad & Muhammad Ayoub, 2023. "Selecting Geological Formations for CO 2 Storage: A Comparative Rating System," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    20. Kim Andreas Kessler, 2023. "What do remote outer island populations in the Pacific think about foreign aid? Insights from Mauke, Cook Islands," Development Policy Review, Overseas Development Institute, vol. 41(S2), December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:14:y:2024:i:3:p:470-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.