IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0026770.html
   My bibliography  Save this article

Choosing Fitness-Enhancing Innovations Can Be Detrimental under Fluctuating Environments

Author

Listed:
  • Julian Z Xue
  • Andre Costopoulos
  • Frederic Guichard

Abstract

The ability to predict the consequences of one's behavior in a particular environment is a mechanism for adaptation. In the absence of any cost to this activity, we might expect agents to choose behaviors that maximize their fitness, an example of directed innovation. This is in contrast to blind mutation, where the probability of becoming a new genotype is independent of the fitness of the new genotypes. Here, we show that under environments punctuated by rapid reversals, a system with both genetic and cultural inheritance should not always maximize fitness through directed innovation. This is because populations highly accurate at selecting the fittest innovations tend to over-fit the environment during its stable phase, to the point that a rapid environmental reversal can cause extinction. A less accurate population, on the other hand, can track long term trends in environmental change, keeping closer to the time-average of the environment. We use both analytical and agent-based models to explore when this mechanism is expected to occur.

Suggested Citation

  • Julian Z Xue & Andre Costopoulos & Frederic Guichard, 2011. "Choosing Fitness-Enhancing Innovations Can Be Detrimental under Fluctuating Environments," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
  • Handle: RePEc:plo:pone00:0026770
    DOI: 10.1371/journal.pone.0026770
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026770
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0026770&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0026770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. R. Petit & J. Jouzel & D. Raynaud & N. I. Barkov & J.-M. Barnola & I. Basile & M. Bender & J. Chappellaz & M. Davis & G. Delaygue & M. Delmotte & V. M. Kotlyakov & M. Legrand & V. Y. Lipenkov & C. , 1999. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica," Nature, Nature, vol. 399(6735), pages 429-436, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Jonathan Maitland Lauderdale, 2024. "Ocean iron cycle feedbacks decouple atmospheric CO2 from meridional overturning circulation changes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Puetz, Stephen J. & Prokoph, Andreas & Borchardt, Glenn & Mason, Edward W., 2014. "Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 55-75.
    4. Qing Ji & Xiaoping Pang & Xi Zhao, 2014. "A bibliometric analysis of research on Antarctica during 1993–2012," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1925-1939, December.
    5. E. W. Patterson & V. Skiba & A. Wolf & M. L. Griffiths & D. McGee & T. N. Bùi & M. X. Trần & T. H. Đinh & Q. Đỗ-Trọng & G. R. Goldsmith & V. Ersek & K. R. Johnson, 2024. "Local hydroclimate alters interpretation of speleothem δ18O records," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Bruce R. Conard, 2013. "Some Challenges to Sustainability," Sustainability, MDPI, vol. 5(8), pages 1-14, August.
    7. Chavas, Jean-Paul & Grainger, Corbett & Hudson, Nicholas, 2016. "How should economists model climate? Tipping points and nonlinear dynamics of carbon dioxide concentrations," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 56-65.
    8. Strauch, Gerhard (Ed.) & Weise, Stephan M. (Ed.), 2005. "European Society for Isotope Research (ESIR): VIII Isotope Workshop, Extended Abstract Volume. June 25 to 30, 2005, Leipzig, Germany," UFZ Reports 02/2005, Helmholtz Centre for Environmental Research (UFZ).
    9. Anne Willem Omta & Christopher L. Follett & Jonathan M. Lauderdale & Raffaele Ferrari, 2024. "Carbon isotope budget indicates biological disequilibrium dominated ocean carbon storage at the Last Glacial Maximum," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Mabhaudhi, T. & Modi, A.T. & Beletse, Y.G., 2013. "Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter," Agricultural Water Management, Elsevier, vol. 121(C), pages 102-112.
    11. Rakhyun Kim & Brendan Mackey, 2014. "International environmental law as a complex adaptive system," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 14(1), pages 5-24, March.
    12. Thuzar M & A. B. Puteh & N. A. P. Abdullah & M. B. Mohd. Lassim & Kamaruzaman Jusoff, 2010. "The Effects of Temperature Stress on the Quality and Yield of Soya Bean [(Glycine max L.) Merrill.]," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 2(1), pages 172-172, February.
    13. Zhengquan Yao & Xuefa Shi & Qiuzhen Yin & Samuel Jaccard & Yanguang Liu & Zhengtang Guo & Sergey A. Gorbarenko & Kunshan Wang & Tianyu Chen & Zhipeng Wu & Qingyun Nan & Jianjun Zou & Hongmin Wang & Ji, 2024. "Ice sheet and precession controlled subarctic Pacific productivity and upwelling over the last 550,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Dan Pangburn, 2015. "Influence of Carbon Dioxide on Average Global Temperature during the Phanerozoic Eon," Energy & Environment, , vol. 26(5), pages 841-845, September.
    15. Shani, Amir & Arad, Boaz, 2014. "Climate change and tourism: Time for environmental skepticism," Tourism Management, Elsevier, vol. 44(C), pages 82-85.
    16. Hall, Darwin C. & Behl, Richard J., 2006. "Integrating economic analysis and the science of climate instability," Ecological Economics, Elsevier, vol. 57(3), pages 442-465, May.
    17. Campos, Diógenes, 2014. "Macroscopic characterization of data sets by using the average absolute deviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 222-234.
    18. Akram, Fatima & Haq, Ikram ul & Aqeel, Amna & Ahmed, Zeeshan & Shah, Fatima Iftikhar, 2021. "Thermostable cellulases: Structure, catalytic mechanisms, directed evolution and industrial implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Hui-Zhen Fu & Yuh-Shan Ho, 2016. "Highly cited Antarctic articles using Science Citation Index Expanded: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 337-357, October.
    20. Craig Loehle, 2004. "Using Historical Climate Data to Evaluate Climate Trends: Issues of Statistical Inference," Energy & Environment, , vol. 15(1), pages 1-10, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0026770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.