IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i4p865-874.html
   My bibliography  Save this article

Solar thermochemical conversion of CO2 via erbium oxide based redox cycle

Author

Listed:
  • Rahul R. Bhosale

Abstract

Investigation of the viability of the erbium oxide‐based solar thermochemical CO2 splitting cycle is reported. This study aimed to explore the effect of partial thermal reduction (TR) of Er2O3 on the thermodynamic process parameters desirable to design a solar reactor system for the erbium oxide‐based CO2 splitting (ErO‐CS) cycle. First, the percentage TR of Er2O3 is estimated as a function of the TR temperature (TH). Acquired results indicated that to achieve a percentage TR of Er2O3 in the range of 5–100%; the solar reactor has to be functioned in the temperature range of TH = 2327–2677 K. The solar energy required to drive the ErO‐CS cycle (Q̇solar-cycle-ErO-CS) was observed to be on the higher side due to the obligation of the elevated values of TH. This rise in the Q̇solar-cycle-ErO-CS as a function of percentage TR of Er2O3 reflected in a decrease in the solar‐to‐fuel energy conversion efficiency (ηsolar-to-fuel-ErO-CS). The maximum ηsolar-to-fuel-ErO-CS = 4.04% is achieved for a percentage TR of Er2O3 = 25% (TH = 2432 K). By employing 100% heat recuperation, the ηsolar-to-fuel-ErO-CS (for percentage TR of Er2O3 = 25%) increased up to 5.79%. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Rahul R. Bhosale, 2020. "Solar thermochemical conversion of CO2 via erbium oxide based redox cycle," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 865-874, August.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:865-874
    DOI: 10.1002/ghg.1961
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1961
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rahul Bhosale & Anand Kumar & Fares AlMomani & Ujjal Ghosh & Mohammad Saad Anis & Konstantinos Kakosimos & Rajesh Shende & Marc A. Rosen, 2016. "Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle," Energies, MDPI, vol. 9(5), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoying Sun & Xianyao Yan & Yingjie Li & Jianli Zhao & Zeyan Wang & Tao Wang, 2020. "Coupled CO2 capture and thermochemical heat storage of CaO derived from calcium acetate," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1027-1038, October.
    2. Rahul R. Bhosale, 2020. "Estimation of solar‐to‐fuel energy conversion efficiency of a solar driven samarium oxide‐based thermochemical CO2 splitting cycle," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 725-735, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    2. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    3. Rahul R. Bhosale, 2020. "Terbium oxide‐based solar thermochemical CO2 splitting cycle: A thermodynamic investigation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 703-714, August.
    4. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.
    5. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
    6. Van Thuan Le & Elena-Niculina Dragoi & Fares Almomani & Yasser Vasseghian, 2021. "Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review," Energies, MDPI, vol. 14(10), pages 1-11, May.
    7. Rahul R. Bhosale, 2020. "Estimation of solar‐to‐fuel energy conversion efficiency of a solar driven samarium oxide‐based thermochemical CO2 splitting cycle," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 725-735, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:865-874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.