Evaluation of greenhouse gas emissions and energy recovery from planting street trees
Author
Abstract
Suggested Citation
DOI: 10.1002/ghg.1981
Download full text from publisher
References listed on IDEAS
- Kovacs, Kent F. & Haight, Robert G. & Jung, Suhyun & Locke, Dexter H. & O'Neil-Dunne, Jarlath, 2013. "The marginal cost of carbon abatement from planting street trees in New York City," Ecological Economics, Elsevier, vol. 95(C), pages 1-10.
- Ramachandra, T.V. & Shwetmala,, 2012. "Decentralised carbon footprint analysis for opting climate change mitigation strategies in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5820-5833.
- Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
- Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
- Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
- Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
- Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
- Weishu Liu & Mengdi Gu & Guangyuan Hu & Chao Li & Huchang Liao & Li Tang & Philip Shapira, 2014. "Profile of developments in biomass-based bioenergy research: a 20-year perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 507-521, May.
- Vanessa Burg & Gillianne Bowman & Stefanie Hellweg & Oliver Thees, 2019. "Long-Term Wet Bioenergy Resources in Switzerland: Drivers and Projections until 2050," Energies, MDPI, vol. 12(18), pages 1-21, September.
- Vaibhav Chaturvedi & Priyadarshi Shukla, 2014. "Role of energy efficiency in climate change mitigation policy for India: assessment of co-benefits and opportunities within an integrated assessment modeling framework," Climatic Change, Springer, vol. 123(3), pages 597-609, April.
- Panos, Evangelos & Kannan, Ramachandran, 2016. "The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland," Energy, Elsevier, vol. 112(C), pages 1120-1138.
- Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Mohr, Lukas & Burg, Vanessa & Thees, Oliver & Trutnevyte, Evelina, 2019. "Spatial hot spots and clusters of bioenergy combined with socio-economic analysis in Switzerland," Renewable Energy, Elsevier, vol. 140(C), pages 840-851.
- Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
- Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
- Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
- Raphaël Homayoun Boroumand & Stéphane Goutte & Thomas Péran & Thomas Porcher, 2019.
"Worker mobility and the purchase of low CO2 emission vehicles in France: a datamining approach,"
European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 16(2), pages 171-205, December.
- Raphaël Homayoun Boroumand & Stéphane Goutte & Thomas Péran & Thomas Porcher, 2019. "Worker mobility and the purchase of low CO2 emission vehicles in France: a datamining approach," Post-Print halshs-01968001, HAL.
- Raphaël Homayoun Boroumand & Stéphane Goutte & Thomas Péran & Thomas Porcher, 2019. "Worker mobility and the purchase of low CO2 emission vehicles in France: a datamining approach," Post-Print halshs-01644639, HAL.
- Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
- Buffat, René & Raubal, Martin, 2019. "Spatio-temporal potential of a biogenic micro CHP swarm in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 443-454.
- Namsaraev, Z.B. & Gotovtsev, P.M. & Komova, A.V. & Vasilov, R.G., 2018. "Current status and potential of bioenergy in the Russian Federation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 625-634.
- Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:3:p:604-612. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.