IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v34y2023i1ne2766.html
   My bibliography  Save this article

Stochastic tropical cyclone precipitation field generation

Author

Listed:
  • William Kleiber
  • Stephan Sain
  • Luke Madaus
  • Patrick Harr

Abstract

Tropical cyclones are important drivers of coastal flooding which have severe negative public safety and economic consequences. Due to the rare occurrence of such events, high spatial and temporal resolution historical storm precipitation data are limited in availability. This article introduces a statistical tropical cyclone space‐time precipitation generator given limited information from storm track datasets. Given a handful of predictor variables that are common in either historical or simulated storm track ensembles such as pressure deficit at the storm's center, radius of maximal winds, storm center and direction, and distance to coast, the proposed stochastic model generates space‐time fields of quantitative precipitation over the study domain. Statistically novel aspects include that the model is developed in Lagrangian coordinates with respect to the dynamic storm center that uses ideas from low‐rank representations along with circular process models. The model is trained on a set of tropical cyclone data from an advanced weather forecasting model over the Gulf of Mexico and southern United States, and is validated by cross‐validation. Results show the model appropriately captures spatial asymmetry of cyclone precipitation patterns, total precipitation as well as the local distribution of precipitation at a set of case study locations along the coast. We additionally compare our model against a widely‐used statistical forecast, and illustrate that our approach better captures uncertainty, as well as storm characteristics such as asymmetry.

Suggested Citation

  • William Kleiber & Stephan Sain & Luke Madaus & Patrick Harr, 2023. "Stochastic tropical cyclone precipitation field generation," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
  • Handle: RePEc:wly:envmet:v:34:y:2023:i:1:n:e2766
    DOI: 10.1002/env.2766
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2766
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    2. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    3. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Danny Modlin & Montserrat Fuentes & Brian Reich, 2012. "Circular conditional autoregressive modeling of vector fields," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 46-53, February.
    4. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    5. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    6. Daniel R. Chavas & Kevin A. Reed & John A. Knaff, 2017. "Physical understanding of the tropical cyclone wind-pressure relationship," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Zammit‐Mangion & Nathaniel K. Newlands & Wesley S. Burr, 2023. "Environmental data science: Part 1," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    2. Caitlin M. Berry & William Kleiber & Bri‐Mathias Hodge, 2023. "Subordinated Gaussian processes for solar irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    3. S. R. Johnson & S. E. Heaps & K. J. Wilson & D. J. Wilkinson, 2023. "A Bayesian spatio‐temporal model for short‐term forecasting of precipitation fields," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    2. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    3. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    4. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    5. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    6. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    7. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    8. Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
    9. Ashton Wiens & Douglas Nychka & William Kleiber, 2020. "Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    10. Jialuo Liu & Tingjin Chu & Jun Zhu & Haonan Wang, 2022. "Large spatial data modeling and analysis: A Krylov subspace approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1115-1143, September.
    11. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    12. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    13. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    14. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    15. Edwards, Matthew & Castruccio, Stefano & Hammerling, Dorit, 2020. "Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    16. Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
    17. Karl Pazdernik & Ranjan Maitra & Douglas Nychka & Stephan Sain, 2018. "Reduced Basis Kriging for Big Spatial Fields," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 280-300, August.
    18. Bivand, Roger & Krivoruchko, Konstantin, 2018. "Big data sampling and spatial analysis: “which of the two ladles, of fig-wood or gold, is appropriate to the soup and the pot?”," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 87-91.
    19. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    20. Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:34:y:2023:i:1:n:e2766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.