IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/170751.html
   My bibliography  Save this article

A new global anthropogenic heat estimation based on high-resolution nighttime light data

Author

Listed:
  • Yang, Wangming
  • Luan, Yibo
  • Liu, Xiaolei
  • Yu, Xiaoyong
  • Miao, Lijuan
  • Cui, Xuefeng

Abstract

Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km2 spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems.

Suggested Citation

  • Yang, Wangming & Luan, Yibo & Liu, Xiaolei & Yu, Xiaoyong & Miao, Lijuan & Cui, Xuefeng, 2017. "A new global anthropogenic heat estimation based on high-resolution nighttime light data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4, pages 1-11.
  • Handle: RePEc:zbw:espost:170751
    DOI: 10.1038/sdata.2017.116
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/170751/1/Yang_2017_anthropogenic_heat_estimation.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1038/sdata.2017.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher D. Elvidge & Daniel Ziskin & Kimberly E. Baugh & Benjamin T. Tuttle & Tilottama Ghosh & Dee W. Pack & Edward H. Erwin & Mikhail Zhizhin, 2009. "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, MDPI, vol. 2(3), pages 1-28, August.
    2. Guang J. Zhang & Ming Cai & Aixue Hu, 2013. "Energy consumption and the unexplained winter warming over northern Asia and North America," Nature Climate Change, Nature, vol. 3(5), pages 466-470, May.
    3. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunfeng Hu & Yunzhi Zhang, 2020. "Global Nighttime Light Change from 1992 to 2017: Brighter and More Uniform," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    2. Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wangming Yang & Bing Chen & Xuefeng Cui, 2014. "High-Resolution Mapping of Anthropogenic Heat in China from 1992 to 2010," IJERPH, MDPI, vol. 11(4), pages 1-12, April.
    2. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    3. Thomas Akpan Harry & Ekemini John Peter & Nsidibe Akpan Udoduk, 2022. "Environmental Impact Assessment Of Oil Producing Communities In Part Of The Niger Delta. A Case Study Of Ibeno, Ikot Abasi, Onna And Esit-Eket Local Government Area In Akwa Ibom State, Nigeria," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 5(2), pages 49-56, April.
    4. Yaxi Gong & Xiang Ji & Yuan Zhang & Shanshan Cheng, 2023. "Spatial Vitality Evaluation and Coupling Regulation Mechanism of a Complex Ecosystem in Lixiahe Plain Based on Multi-Source Data," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    5. Michel Beine & Ilan Noy & Christopher Parsons, 2021. "Climate change, migration and voice," Climatic Change, Springer, vol. 167(1), pages 1-27, July.
    6. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    7. Juergen Bitzer & Erkan Goeren, 2018. "Foreign Aid and Subnational Development: A Grid Cell Analysis," Working Papers V-407-18, University of Oldenburg, Department of Economics, revised Mar 2018.
    8. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    9. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    10. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    11. Michał Myck & Mateusz Najsztub, 2020. "Implications of the Polish 1999 administrative reform for regional socio‐economic development," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 28(4), pages 559-579, October.
    12. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    14. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    15. Gibson, John & Datt, Gaurav & Murgai, Rinku & Ravallion, Martin, 2017. "For India’s Rural Poor, Growing Towns Matter More Than Growing Cities," World Development, Elsevier, vol. 98(C), pages 413-429.
    16. Jonas Hveding Hamang, 2022. "Local economic development and oil discoveries," Working Papers No 03/2022, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    17. Jian-Zhou Wei & Kai Zheng & Feng Zhang & Chao Fang & Yu-Yu Zhou & Xue-Cao Li & Feng-Min Li & Jian-Sheng Ye, 2019. "Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    18. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    19. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    20. Konstantin Ash & Nick Obradovich, 2020. "Climatic Stress, Internal Migration, and Syrian Civil War Onset," Journal of Conflict Resolution, Peace Science Society (International), vol. 64(1), pages 3-31, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:170751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.