Clustering of bivariate satellite time series: A quantile approach
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2755
Download full text from publisher
References listed on IDEAS
- Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
- R. A. Haggarty & C. A. Miller & E. M. Scott, 2015. "Spatially weighted functional clustering of river network data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(3), pages 491-506, April.
- Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
- H. Li & X. Deng & C. A. Dolloff & E. P. Smith, 2016. "Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship," Environmetrics, John Wiley & Sons, Ltd., vol. 27(1), pages 15-26, February.
- Dries F. Benoit & Dirk Van den Poel, 2012. "Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1174-1188, November.
- R. Giraldo & P. Delicado & J. Mateu, 2012. "Hierarchical clustering of spatially correlated functional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(4), pages 403-421, November.
- Gianluca Sottile & Giada Adelfio, 2019. "Clusters of effects curves in quantile regression models," Computational Statistics, Springer, vol. 34(2), pages 551-569, June.
- Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jesper Muren & Vilhelm Niklasson & Dmitry Otryakhin & Maxim Romashin, 2024. "Automatic deforestation detectors based on frequentist statistics and their extensions for other spatial objects," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- V L Miguéis & D F Benoit & D Van den Poel, 2013.
"Enhanced decision support in credit scoring using Bayesian binary quantile regression,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
- V. L. Miguéis & D. F. Benoit & D. Van Den Poel, 2012. "Enhanced Decision Support in Credit Scoring Using Bayesian Binary Quantile Regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/803, Ghent University, Faculty of Economics and Business Administration.
- Jamal Bouoiyour & Refk Selmi, 2017.
"The Bitcoin price formation: Beyond the fundamental sources,"
Working Papers
hal-01548710, HAL.
- Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Papers 1707.01284, arXiv.org.
- Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023.
"Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP,"
Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
- Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.
- A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
- Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
- Chiuling Lu & Ann Yang & Jui-Feng Huang, 2015. "Bankruptcy predictions for U.S. air carrier operations: a study of financial data," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 574-589, July.
- Yukiko Omata & Hajime Katayama & Toshi. H. Arimura, 2017. "Same concerns, same responses? A Bayesian quantile regression analysis of the determinants for supporting nuclear power generation in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 581-608, July.
- Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
- Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
- Divan A. Burger & Sean van der Merwe & Emmanuel Lesaffre & Peter C. le Roux & Morgan J. Raath‐Krüger, 2023. "A robust mixed‐effects parametric quantile regression model for continuous proportions: Quantifying the constraints to vitality in cushion plants," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(4), pages 444-470, November.
- Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Sriram, Karthik, 2015. "A sandwich likelihood correction for Bayesian quantile regression based on the misspecified asymmetric Laplace density," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 18-26.
- Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
- Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
- Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021.
"Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada,"
Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
- Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2020. "Bayesian Panel Quantile Regression for Binary Outcomes with Correlated Random Effects: An Application on Crime Recidivism in Canada," Papers 2001.09295, arXiv.org.
- Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2020. "Bayesian Panel Quantile Regression for Binary Outcomes with Correlated Random Effects: An Application on Crime Recidivism in Canada," CIRANO Working Papers 2020s-08, CIRANO.
- Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2020. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Post-Print hal-04129345, HAL.
- Bresson, Georges & Lacroix, Guy & Arshad Rahman, Mohammad, 2020. "Bayesian Panel Quantile Regression for Binary Outcomes with Correlated Random Effects: An Application on Crime Recidivism in Canada," IZA Discussion Papers 12928, Institute of Labor Economics (IZA).
- Evelina Gabasova & John Reid & Lorenz Wernisch, 2017. "Clusternomics: Integrative context-dependent clustering for heterogeneous datasets," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-29, October.
- Priya Kedia & Damitri Kundu & Kiranmoy Das, 2023. "A Bayesian variable selection approach to longitudinal quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 149-168, March.
- Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:7:n:e2755. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.