Impact of the mesoscale structure of a bipartite ecological interaction network on its robustness through a probabilistic modeling
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2709
Download full text from publisher
References listed on IDEAS
- Manuel Sebastian Mariani & Zhuo-Ming Ren & Jordi Bascompte & Claudio Juan Tessone, 2019. "Nestedness in complex networks: Observation, emergence, and implications," Papers 1905.07593, arXiv.org.
- Nowicki K. & Snijders T. A. B., 2001. "Estimation and Prediction for Stochastic Blockstructures," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1077-1087, September.
- Timothée Tabouy & Pierre Barbillon & Julien Chiquet, 2020. "Variational Inference for Stochastic Block Models From Sampled Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 455-466, January.
- Catherine Matias & Vincent Miele, 2017. "Statistical clustering of temporal networks through a dynamic stochastic block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1119-1141, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li Guo & Wolfgang Karl Härdle & Yubo Tao, 2024.
"A Time-Varying Network for Cryptocurrencies,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 437-456, April.
- Li Guo & Wolfgang Karl Hardle & Yubo Tao, 2018. "A Time-Varying Network for Cryptocurrencies," Papers 1802.03708, arXiv.org, revised Nov 2022.
- Li Guo & Wolfgang Karl Hardle & Yubo Tao, 2021. "A Time-Varying Network for Cryptocurrencies," Papers 2108.11921, arXiv.org.
- Guo, Li & Härdle, Wolfgang & Tao, Yubo, 2021. "A time-varying network for cryptocurrencies," IRTG 1792 Discussion Papers 2021-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Lorenzo Federico & Ayoub Mounim & Pierpaolo D’Urso & Livia De Giovanni, 2024. "Complex networks and deep learning for copper flow across countries," Annals of Operations Research, Springer, vol. 339(1), pages 937-963, August.
- Hledik, Juraj & Rastelli, Riccardo, 2020. "A dynamic network model to measure exposure diversification in the Austrian interbank market," ESRB Working Paper Series 109, European Systemic Risk Board.
- Dragana M. Pavlović & Bryan R.L. Guillaume & Soroosh Afyouni & Thomas E. Nichols, 2020. "Multi‐subject stochastic blockmodels with mixed effects for adaptive analysis of individual differences in human brain network cluster structure," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 363-396, August.
- Juraj Hledik & Riccardo Rastelli, 2018. "A dynamic network model to measure exposure diversification in the Austrian interbank market," Papers 1804.01367, arXiv.org, revised Aug 2018.
- Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
- Rezaei, Sarah & Rosenkranz, Stephanie & Weitzel, Utz & Westbrock, Bastian, 2024. "Social preferences on networks," Journal of Public Economics, Elsevier, vol. 234(C).
- Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
- Falk Bräuning & Siem Jan Koopman, 2016.
"The dynamic factor network model with an application to global credit risk,"
Working Papers
16-13, Federal Reserve Bank of Boston.
- Falk Bräuning & Siem Jan Koopman, 2016. "The Dynamic Factor Network Model with an Application to Global Credit-Risk," Tinbergen Institute Discussion Papers 16-105/III, Tinbergen Institute.
- Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Jiang, Binyan & Li, Jialiang & Yao, Qiwei, 2023. "Autoregressive networks," LSE Research Online Documents on Economics 119983, London School of Economics and Political Science, LSE Library.
- Tom Britton, 2020. "Epidemic models on social networks—With inference," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 222-241, August.
- Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
- Matteo Bruno & Dario Mazzilli & Aurelio Patelli & Tiziano Squartini & Fabio Saracco, 2023. "Inferring comparative advantage via entropy maximization," Papers 2304.12245, arXiv.org.
- Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
- Fabio Ashtar Telarico, 2024. "A Network Approach to the Study of the Military–Industrial–Media Complex in Bulgaria," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 442-463.
- Ludkin, Matthew, 2020. "Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Lee, Kevin H. & Xue, Lingzhou & Hunter, David R., 2020. "Model-based clustering of time-evolving networks through temporal exponential-family random graph models," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Xiu Xu & Weining Wang & Yongcheol Shin & Chaowen Zheng, 2024.
"Dynamic Network Quantile Regression Model,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 407-421, April.
- Xiu Xu & Weining Wang & Yongcheol Shin & Chaowen Zheng, 2021. "Dynamic Network Quantile Regression Model," Papers 2111.07633, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:2:n:e2709. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.