IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p455-466.html
   My bibliography  Save this article

Variational Inference for Stochastic Block Models From Sampled Data

Author

Listed:
  • Timothée Tabouy
  • Pierre Barbillon
  • Julien Chiquet

Abstract

This article deals with nonobserved dyads during the sampling of a network and consecutive issues in the inference of the stochastic block model (SBM). We review sampling designs and recover missing at random (MAR) and not missing at random (NMAR) conditions for the SBM. We introduce variants of the variational EM algorithm for inferring the SBM under various sampling designs (MAR and NMAR) all available as an R package. Model selection criteria based on integrated classification likelihood are derived for selecting both the number of blocks and the sampling design. We investigate the accuracy and the range of applicability of these algorithms with simulations. We explore two real-world networks from ethnology (seed circulation network) and biology (protein–protein interaction network), where the interpretations considerably depend on the sampling designs considered. Supplementary materials for this article are available online.

Suggested Citation

  • Timothée Tabouy & Pierre Barbillon & Julien Chiquet, 2020. "Variational Inference for Stochastic Block Models From Sampled Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 455-466, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:455-466
    DOI: 10.1080/01621459.2018.1562934
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1562934
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1562934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    2. Saint‐Clair Chabert‐Liddell & Pierre Barbillon & Sophie Donnet, 2022. "Impact of the mesoscale structure of a bipartite ecological interaction network on its robustness through a probabilistic modeling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    3. Gaucher, Solenne & Klopp, Olga & Robin, Geneviève, 2021. "Outlier detection in networks with missing links," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:455-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.