IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/119983.html
   My bibliography  Save this paper

Autoregressive networks

Author

Listed:
  • Jiang, Binyan
  • Li, Jialiang
  • Yao, Qiwei

Abstract

We propose a rst-order autoregressive (i.e. AR(1)) model for dynamic network processes in which edges change over time while nodes remain unchanged. The model depicts the dynamic changes explicitly. It also facilitates simple and ecient statistical inference methods including a permutation test for diagnostic checking for the tted network models. The proposed model can be applied to the network processes with various underlying structures but with independent edges. As an illustration, an AR(1) stochastic block model has been investigated in depth, which characterizes the latent communities by the transition probabilities over time. This leads to a new and more eective spectral clustering algorithm for identifying the latent communities. We have derived a nite sample condition under which the perfect recovery of the community structure can be achieved by the newly dened spectral clustering algorithm. Furthermore the inference for a change point is incorporated into the AR(1) stochastic block model to cater for possible structure changes. We have derived the explicit error rates for the maximum likelihood estimator of the change-point. Application with three real data sets illustrates both relevance and usefulness of the proposed AR(1) models and the associate inference methods.

Suggested Citation

  • Jiang, Binyan & Li, Jialiang & Yao, Qiwei, 2023. "Autoregressive networks," LSE Research Online Documents on Economics 119983, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:119983
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/119983/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavel N. Krivitsky & Mark S. Handcock, 2014. "A separable model for dynamic networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 29-46, January.
    2. Chen, Elynn Y. & Fan, Jianqing & Zhu, Xuening, 2023. "Community network auto-regression for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1239-1256.
    3. Jinyuan Chang & Eric D Kolaczyk & Qiwei Yao, 2020. "Discussion of ‘Network cross-validation by edge sampling’," Biometrika, Biometrika Trust, vol. 107(2), pages 277-280.
    4. Rastelli, Riccardo & Latouche, Pierre & Friel, Nial, 2018. "Choosing the number of groups in a latent stochastic blockmodel for dynamic networks," Network Science, Cambridge University Press, vol. 6(4), pages 469-493, December.
    5. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    6. Jinyuan Chang & Eric D. Kolaczyk & Qiwei Yao, 2022. "Estimation of Subgraph Densities in Noisy Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 361-374, January.
    7. Catherine Matias & Vincent Miele, 2017. "Statistical clustering of temporal networks through a dynamic stochastic block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1119-1141, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Kevin H. & Xue, Lingzhou & Hunter, David R., 2020. "Model-based clustering of time-evolving networks through temporal exponential-family random graph models," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    2. Paul Riverain & Simon Fossier & Mohamed Nadif, 2023. "Poisson degree corrected dynamic stochastic block model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 135-162, March.
    3. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    4. Nathan B. Wikle & Ephraim M. Hanks & David P. Hughes, 2019. "A Dynamic Individual-Based Model for High-Resolution Ant Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 589-609, December.
    5. Duxbury, Scott W, 2018. "Diagnosing Multicollinearity in Exponential Random Graph Models," SocArXiv 2tgm7, Center for Open Science.
    6. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    7. Ana M. Guerra & Felipe Montes & Andrés F. Useche & Ana María Jaramillo & Silvia A. González & Jose D. Meisel & Catalina Obando & Valentina Cardozo & Ruth F. Hunter & Olga L. Sarmiento, 2020. "Effects of a Physical Activity Program Potentiated with ICTs on the Formation and Dissolution of Friendship Networks of Children in a Middle-Income Country," IJERPH, MDPI, vol. 17(16), pages 1-21, August.
    8. Tyler Prochnow & Meg Patterson & M. Renée Umstattd Meyer & Joseph Lightner & Luis Gomez & Joseph Sharkey, 2022. "Conducting Physical Activity Research on Racially and Ethnically Diverse Adolescents Using Social Network Analysis: Case Studies for Practical Use," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    9. Gaonkar, Shweta & Mele, Angelo, 2023. "A model of inter-organizational network formation," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 82-104.
    10. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    11. Duxbury, Scott W, 2017. "Diagnosing Multicollinearity in Exponential Random Graph Models," OSF Preprints hz93j, Center for Open Science.
    12. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    13. Prochnow, Tyler & Patterson, Megan S. & Hartnell, Logan & West, Geoffrey & Umstattd Meyer, M. Renée, 2021. "Implications of race and ethnicity for child physical activity and social connections at summer care programs," Children and Youth Services Review, Elsevier, vol. 127(C).
    14. Ryohei Hisano & Tsutomu Watanabe & Takayuki Mizuno & Takaaki Ohnishi & Didier Sornette, 2016. "The gradual evolution of buyer-seller networks and their role in aggregate fluctuations," UTokyo Price Project Working Paper Series 068, University of Tokyo, Graduate School of Economics.
    15. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    16. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    17. Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
    18. Ludkin, Matthew, 2020. "Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    19. Elina H. Hwang & Xitong Guo & Yong Tan & Yuanyuan Dang, 2022. "Delivering Healthcare Through Teleconsultations: Implications for Offline Healthcare Disparity," Information Systems Research, INFORMS, vol. 33(2), pages 515-539, June.
    20. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.

    More about this item

    Keywords

    AR(1) networks; change point; dynamic stochastic block model; Hamming distance; maximum likelihood estimation; spectral clustering algorithm; Yule-Walker equation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:119983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.