IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i6ne2678.html
   My bibliography  Save this article

Truncated generalized extreme value distribution‐based ensemble model output statistics model for calibration of wind speed ensemble forecasts

Author

Listed:
  • Sándor Baran
  • Patrícia Szokol
  • Marianna Szabó

Abstract

In recent years, ensemble weather forecasting has become a routine at all major weather prediction centers. These forecasts are obtained from multiple runs of numerical weather prediction models with different initial conditions or model parametrizations. However, ensemble forecasts can often be underdispersive and also biased, so some kind of postprocessing is needed to account for these deficiencies. One of the most popular state of the art statistical postprocessing techniques is the ensemble model output statistics (EMOS), which provides a full predictive distribution of the studied weather quantity. We propose a novel EMOS model for calibrating wind speed ensemble forecasts, where the predictive distribution is a generalized extreme value (GEV) distribution left truncated at zero (TGEV). The truncation corrects the disadvantage of the GEV distribution‐based EMOS models of occasionally predicting negative wind speed values, without affecting its favorable properties. The new model is tested on four datasets of wind speed ensemble forecasts provided by three different ensemble prediction systems, covering various geographical domains and time periods. The forecast skill of the TGEV EMOS model is compared with the predictive performance of the truncated normal, log‐normal and GEV methods and the raw and climatological forecasts as well. The results verify the advantageous properties of the novel TGEV EMOS approach.

Suggested Citation

  • Sándor Baran & Patrícia Szokol & Marianna Szabó, 2021. "Truncated generalized extreme value distribution‐based ensemble model output statistics model for calibration of wind speed ensemble forecasts," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:6:n:e2678
    DOI: 10.1002/env.2678
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2678
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    2. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    3. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
    4. Petra Friederichs & Thordis L. Thorarinsdottir, 2012. "Forecast verification for extreme value distributions with an application to probabilistic peak wind prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 23(7), pages 579-594, November.
    5. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    6. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    7. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    8. Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
    9. S. Baran & S. Lerch, 2016. "Mixture EMOS model for calibrating ensemble forecasts of wind speed," Environmetrics, John Wiley & Sons, Ltd., vol. 27(2), pages 116-130, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhat, Chandra R., 2022. "A new closed-form two-stage budgeting-based multiple discrete-continuous model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 162-192.
    2. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    2. Jonas R. Brehmer & Tilmann Gneiting, 2020. "Properization: constructing proper scoring rules via Bayes acts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 659-673, June.
    3. Thorey, J. & Chaussin, C. & Mallet, V., 2018. "Ensemble forecast of photovoltaic power with online CRPS learning," International Journal of Forecasting, Elsevier, vol. 34(4), pages 762-773.
    4. Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
    5. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    6. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
    7. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    8. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    9. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    10. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    11. Marc-Oliver Pohle, 2020. "The Murphy Decomposition and the Calibration-Resolution Principle: A New Perspective on Forecast Evaluation," Papers 2005.01835, arXiv.org.
    12. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
    13. Tino Werner, 2022. "Elicitability of Instance and Object Ranking," Decision Analysis, INFORMS, vol. 19(2), pages 123-140, June.
    14. Lee Tae-Hwy & Wang He & Xi Zhou & Zhang Ru, 2023. "Density Forecast of Financial Returns Using Decomposition and Maximum Entropy," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 57-83, January.
    15. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
    16. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    17. Berrisch, Jonathan & Ziel, Florian, 2023. "CRPS learning," Journal of Econometrics, Elsevier, vol. 237(2).
    18. Sebastian Lerch & Sándor Baran, 2017. "Similarity-based semilocal estimation of post-processing models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 29-51, January.
    19. Taillardat, Maxime & Fougères, Anne-Laure & Naveau, Philippe & de Fondeville, Raphaël, 2023. "Evaluating probabilistic forecasts of extremes using continuous ranked probability score distributions," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1448-1459.
    20. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:6:n:e2678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.