IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i7ne2629.html
   My bibliography  Save this article

Ensemble forecasting of the Zika space‐time spread with topological data analysis

Author

Listed:
  • Marwah Soliman
  • Vyacheslav Lyubchich
  • Yulia R. Gel

Abstract

As per the records of the World Health Organization, the first formally reported incidence of Zika virus occurred in Brazil in May 2015. The disease then rapidly spread to other countries in Americas and East Asia, affecting more than 1,000,000 people. Zika virus is primarily transmitted through bites of infected mosquitoes of the species Aedes (Aedes aegypti and Aedes albopictus). The abundance of mosquitoes and, as a result, the prevalence of Zika virus infections are common in areas which have high precipitation, high temperature, and high population density. Nonlinear spatio‐temporal dependency of such data and lack of historical public health records make prediction of the virus spread particularly challenging. In this article, we enhance Zika forecasting by introducing the concepts of topological data analysis and, specifically, persistent homology of atmospheric variables, into the virus spread modeling. The topological summaries allow for capturing higher order dependencies among atmospheric variables that otherwise might be unassessable via conventional spatio‐temporal modeling approaches based on geographical proximity assessed via Euclidean distance. We introduce a new concept of cumulative Betti numbers and then integrate the cumulative Betti numbers as topological descriptors into three predictive machine learning models: random forest, generalized boosted regression, and deep neural network. Furthermore, to better quantify for various sources of uncertainties, we combine the resulting individual model forecasts into an ensemble of the Zika spread predictions using Bayesian model averaging. The proposed methodology is illustrated in application to forecasting of the Zika space‐time spread in Brazil in the year 2018.

Suggested Citation

  • Marwah Soliman & Vyacheslav Lyubchich & Yulia R. Gel, 2020. "Ensemble forecasting of the Zika space‐time spread with topological data analysis," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:7:n:e2629
    DOI: 10.1002/env.2629
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2629
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tiago M. Fragoso & Wesley Bertoli & Francisco Louzada, 2018. "Bayesian Model Averaging: A Systematic Review and Conceptual Classification," International Statistical Review, International Statistical Institute, vol. 86(1), pages 1-28, April.
    2. Stella C. Watson Self & Christopher S. McMahan & Derek A. Brown & Robert B. Lund & Jenna R. Gettings & Michael J. Yabsley, 2018. "A large‐scale spatio‐temporal binomial regression model for estimating seroprevalence trends," Environmetrics, John Wiley & Sons, Ltd., vol. 29(8), December.
    3. Mahmoud Torabi, 2013. "Spatio–temporal modeling for disease mapping using CAR and B‐spline smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 24(3), pages 180-188, May.
    4. Yue Teng & Dehua Bi & Guigang Xie & Yuan Jin & Yong Huang & Baihan Lin & Xiaoping An & Dan Feng & Yigang Tong, 2017. "Dynamic Forecasting of Zika Epidemics Using Google Trends," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-10, January.
    5. Patrick L. McDermott & Christopher K. Wikle, 2019. "Deep echo state networks with uncertainty quantification for spatio‐temporal forecasting," Environmetrics, John Wiley & Sons, Ltd., vol. 30(3), May.
    6. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    7. Marcia C. Castro & Qiuyi C. Han & Lucas R. Carvalho & Cesar G. Victora & Giovanny V. A. França, 2018. "Implications of Zika virus and congenital Zika syndrome for the number of live births in Brazil," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(24), pages 6177-6182, June.
    8. Derek Lo & Briton Park, 2018. "Modeling the spread of the Zika virus using topological data analysis," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-7, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Roland Brown & Yingling Fan & Kirti Das & Julian Wolfson, 2021. "Iterated multisource exchangeability models for individualized inference with an application to mobile sensor data," Biometrics, The International Biometric Society, vol. 77(2), pages 401-412, June.
    3. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    4. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    5. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    7. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    8. Hyemin Han, 2024. "Bayesian Model Averaging and Regularized Regression as Methods for Data-Driven Model Exploration, with Practical Considerations," Stats, MDPI, vol. 7(3), pages 1-13, July.
    9. Emanuel Kopp, 2018. "Determinants of U.S. Business Investment," IMF Working Papers 2018/139, International Monetary Fund.
    10. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    11. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.
    12. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    13. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    14. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    16. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    18. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    19. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    20. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:7:n:e2629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.