Accuracy and Fairness for Juvenile Justice Risk Assessments
Author
Abstract
Suggested Citation
DOI: 10.1111/jels.12206
Download full text from publisher
References listed on IDEAS
- Richard A. Berk & Susan B. Sorenson & Geoffrey Barnes, 2016. "Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(1), pages 94-115, March.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018.
"Human Decisions and Machine Predictions,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2017. "Human Decisions and Machine Predictions," NBER Working Papers 23180, National Bureau of Economic Research, Inc.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Runshan Fu & Ginger Zhe Jin & Meng Liu, 2022. "Does Human-algorithm Feedback Loop Lead to Error Propagation? Evidence from Zillow’s Zestimate," NBER Working Papers 29880, National Bureau of Economic Research, Inc.
- Jens Ludwig & Sendhil Mullainathan, 2021.
"Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System,"
Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
- Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," NBER Working Papers 29267, National Bureau of Economic Research, Inc.
- Liwei Chen & J. J. Po-An Hsieh & Arun Rai, 2022. "How Does Intelligent System Knowledge Empowerment Yield Payoffs? Uncovering the Adaptation Mechanisms and Contingency Role of Work Experience," Information Systems Research, INFORMS, vol. 33(3), pages 1042-1071, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khoa Hoang & Robert Faff, 2021. "Is the ex‐ante equity risk premium always positive? Evidence from a new conditional expectations model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(1), pages 95-124, March.
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Eli Ben-Michael & D. James Greiner & Melody Huang & Kosuke Imai & Zhichao Jiang & Sooahn Shin, 2024. "Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies," Papers 2403.12108, arXiv.org, revised Oct 2024.
- Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
- Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
- Dionissi Aliprantis & Hal Martin & Kristen Tauber, 2020.
"What Determines the Success of Housing Mobility Programs?,"
Working Papers
20-36R, Federal Reserve Bank of Cleveland, revised 19 Oct 2022.
- Dionissi Aliprantis & Kristen Tauber & Hal Martin, 2022. "What Determines the Success of Housing Mobility Programs?," Working Papers 2022-043, Human Capital and Economic Opportunity Working Group.
- Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
- Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
- Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
- Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
- Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022.
"Artificial intelligence and systemic risk,"
Journal of Banking & Finance, Elsevier, vol. 140(C).
- Danielsson, Jon & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," LSE Research Online Documents on Economics 111601, London School of Economics and Political Science, LSE Library.
- Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
- Daniel Carter & Amelia Acker & Dan Sholler, 2021. "Investigative approaches to researching information technology companies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(6), pages 655-666, June.
- Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
- Jens Ludwig & Sendhil Mullainathan, 2021.
"Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System,"
Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
- Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," NBER Working Papers 29267, National Bureau of Economic Research, Inc.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:empleg:v:16:y:2019:i:1:p:175-194. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1740-1461 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.