IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v25y2009i3p237-239.html
   My bibliography  Save this article

‘Model selection for generalized linear models with factor‐augmented predictors’

Author

Listed:
  • W. K. Li
  • Guodong Li

Abstract

No abstract is available for this item.

Suggested Citation

  • W. K. Li & Guodong Li, 2009. "‘Model selection for generalized linear models with factor‐augmented predictors’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 237-239, May.
  • Handle: RePEc:wly:apsmbi:v:25:y:2009:i:3:p:237-239
    DOI: 10.1002/asmb.786
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.786
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Startz, Richard, 2008. "Binomial Autoregressive Moving Average Models With an Application to U.S. Recessions," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 1-8, January.
    2. Hung, Ying & Zarnitsyna, Veronika & Zhang, Yan & Zhu, Cheng & Wu, C. F. Jeff, 2008. "Binary Time Series Modeling With Application to Adhesion Frequency Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1248-1259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    2. Sun-Joo Cho & Sarah Brown-Schmidt & Woo-yeol Lee, 2018. "Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 751-771, September.
    3. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    4. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Jianhong Shen, 2020. "Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 154-184, March.
    5. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    6. Fornaro, Paolo, 2015. "Forecasting U.S. Recessions with a Large Set of Predictors," MPRA Paper 62973, University Library of Munich, Germany.
    7. Kheifets, Igor & Velasco, Carlos, 2017. "New goodness-of-fit diagnostics for conditional discrete response models," Journal of Econometrics, Elsevier, vol. 200(1), pages 135-149.
    8. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, New Economic School (NES).
    9. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    10. Dunsmuir, William T. M. & Scott, David J., 2015. "The glarma Package for Observation-Driven Time Series Regression of Counts," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i07).
    11. Francis Bismans & Reynald Majetti, 2013. "Forecasting recessions using financial variables: the French case," Empirical Economics, Springer, vol. 44(2), pages 419-433, April.
    12. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    13. Igor Kheifets & Carlos Velasco, 2012. "Model Adequacy Checks for Discrete Choice Dynamic Models," Working Papers w0170, New Economic School (NES).
    14. Francesco Lisi & Enrico Edoli, 2018. "Analyzing and Forecasting Zonal Imbalance Signs in the Italian Electricity Market," The Energy Journal, , vol. 39(5), pages 1-20, September.
    15. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    16. Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
    17. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G., 2016. "Predictive analytics model for healthcare planning and scheduling," European Journal of Operational Research, Elsevier, vol. 253(1), pages 121-131.
    18. Raffaele Mattera, 2023. "Forecasting binary outcomes in soccer," Annals of Operations Research, Springer, vol. 325(1), pages 115-134, June.
    19. Giovanni De Luca & Alfonso Carfora, 2014. "Predicting U.S. recessions through a combination of probability forecasts," Empirical Economics, Springer, vol. 46(1), pages 127-144, February.
    20. Henri Nyberg, 2010. "Testing an autoregressive structure in binary time series models," Economics Bulletin, AccessEcon, vol. 30(2), pages 1460-1473.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:25:y:2009:i:3:p:237-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.