IDEAS home Printed from https://ideas.repec.org/a/wly/apecpp/v44y2022i2p930-945.html
   My bibliography  Save this article

Predicting poverty with vegetation index

Author

Listed:
  • Binh Tang
  • Yanyan Liu
  • David S. Matteson

Abstract

Accurate and timely predictions of the poverty status of communities in developing countries are critical to policymakers. Previous work has applied convolutional neural networks (CNNs) to high‐resolution satellite imagery to perform community‐level poverty prediction. Although promising, such imagery has limitations in predicting poverty among poor communities. We provide the first evidence that a publicly available, moderate‐resolution vegetation index (the normalized difference vegetation index [NDVI]), can be used with CNNs to produce accurate poverty predictions contemporaneously among poor communities heavily dependent on agriculture. We also show that the NDVI can effectively detect consumption variation over time. To our knowledge, this is the first attempt to use remote sensing data to predict future‐period consumption expenditure at the community level.

Suggested Citation

  • Binh Tang & Yanyan Liu & David S. Matteson, 2022. "Predicting poverty with vegetation index," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(2), pages 930-945, June.
  • Handle: RePEc:wly:apecpp:v:44:y:2022:i:2:p:930-945
    DOI: 10.1002/aepp.13221
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/aepp.13221
    Download Restriction: no

    File URL: https://libkey.io/10.1002/aepp.13221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linden McBride & Christopher B. Barrett & Christopher Browne & Leiqiu Hu & Yanyan Liu & David S. Matteson & Ying Sun & Jiaming Wen, 2022. "Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(2), pages 879-892, June.
    2. Kathleen Beegle & Luc Christiaensen & Andrew Dabalen & Isis Gaddis, 2016. "Poverty in a Rising Africa," World Bank Publications - Books, The World Bank Group, number 22575.
    3. Lee, Yong Suk, 2018. "International isolation and regional inequality: Evidence from sanctions on North Korea," Journal of Urban Economics, Elsevier, vol. 103(C), pages 34-51.
    4. Christopher Yeh & Anthony Perez & Anne Driscoll & George Azzari & Zhongyi Tang & David Lobell & Stefano Ermon & Marshall Burke, 2020. "Using publicly available satellite imagery and deep learning to understand economic well-being in Africa," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Chris Browne & David S Matteson & Linden McBride & Leiqiu Hu & Yanyan Liu & Ying Sun & Jiaming Wen & Christopher B Barrett, 2021. "Multivariate random forest prediction of poverty and malnutrition prevalence," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Suaza, Andres & Varela, Daniela, 2024. "Nightlight, landcover and buildings: understanding intracity socioeconomic differences," Documentos de Trabajo 21025, Universidad del Rosario.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ola Hall & Francis Dompae & Ibrahim Wahab & Fred Mawunyo Dzanku, 2023. "A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(7), pages 1753-1768, October.
    2. Baez, Javier E. & Kshirsagar, Varun & Skoufias, Emmanuel, 2024. "Drought-sensitive targeting and child growth faltering in Southern Africa," World Development, Elsevier, vol. 182(C).
    3. Yujun Zhou & Erin Lentz & Hope Michelson & Chungmann Kim & Kathy Baylis, 2022. "Machine learning for food security: Principles for transparency and usability," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(2), pages 893-910, June.
    4. Patrick Lehnert & Michael Niederberger & Uschi Backes-Gellner & Eric Bettinger, 2020. "Proxying Economic Activity with Daytime Satellite Imagery: Filling Data Gaps Across Time and Space," Economics of Education Working Paper Series 0165, University of Zurich, Department of Business Administration (IBW), revised Sep 2022.
    5. Merfeld,Joshua David & Newhouse,David Locke & Weber,Michael & Lahiri,Partha, 2022. "Combining Survey and Geospatial Data Can Significantly Improve Gender-DisaggregatedEstimates of Labor Market Outcomes," Policy Research Working Paper Series 10077, The World Bank.
    6. Newhouse,David Locke & Merfeld,Joshua David & Ramakrishnan,Anusha Pudugramam & Swartz,Tom & Lahiri,Partha, 2022. "Small Area Estimation of Monetary Poverty in Mexico Using Satellite Imagery and Machine Learning," Policy Research Working Paper Series 10175, The World Bank.
    7. Linden McBride & Christopher B. Barrett & Christopher Browne & Leiqiu Hu & Yanyan Liu & David S. Matteson & Ying Sun & Jiaming Wen, 2022. "Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(2), pages 879-892, June.
    8. Ola Hall & Mattias Ohlsson & Thortseinn Rognvaldsson, 2022. "Satellite Image and Machine Learning based Knowledge Extraction in the Poverty and Welfare Domain," Papers 2203.01068, arXiv.org.
    9. Li, Qing & Yu, Shuai & Échevin, Damien & Fan, Min, 2022. "Is poverty predictable with machine learning? A study of DHS data from Kyrgyzstan," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    10. Donghyun Ahn & Jeasurk Yang & Meeyoung Cha & Hyunjoo Yang & Jihee Kim & Sangyoon Park & Sungwon Han & Eunji Lee & Susang Lee & Sungwon Park, 2023. "A human-machine collaborative approach measures economic development using satellite imagery," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Simplice A. Asongu & Joseph I. Uduji & Elda N. Okolo‐Obasi, 2020. "Drivers and Persistence of Death in Conflicts: Global Evidence," World Affairs, John Wiley & Sons, vol. 183(4), pages 389-429, December.
    12. Tchamyou, Vanessa S. & Erreygers, Guido & Cassimon, Danny, 2019. "Inequality, ICT and financial access in Africa," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 169-184.
    13. Patrick Lehnert & Madison Dell & Uschi Backes-Gellner & Eric Bettinger, 2024. "The Effect of Postsecondary Educational Institutions on Local Economies: A Bird’s-Eye View," NBER Working Papers 32679, National Bureau of Economic Research, Inc.
    14. Asongu, Simplice & Tchamyou, Vanessa & Asongu, Ndemaze & Tchamyou, Nina, 2018. "The Comparative African Economics of Governance in Fighting Terrorism," MPRA Paper 92346, University Library of Munich, Germany.
    15. Asongu, Simplice & Acha-Anyi, Paul, 2019. "Global Tourism and Waves of Terror: Perspectives from Military Expenditure," MPRA Paper 101793, University Library of Munich, Germany.
    16. Pulkit Sharma & Achut Manandhar & Patrick Thomson & Jacob Katuva & Robert Hope & David A. Clifton, 2019. "Combining Multi-Modal Statistics for Welfare Prediction Using Deep Learning," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    17. Simplice Asongu & Rexon Nting, 2020. "The comparative economics of financial access in gender economic inclusion," African Journal of Economic and Management Studies, Emerald Group Publishing Limited, vol. 12(2), pages 193-207, December.
    18. Meyer, Maximilian & Hulke, Carolin & Kamwi, Jonathan & Kolem, Hannah & Börner, Jan, 2022. "Spatially heterogeneous effects of collective action on environmental dependence in Namibia’s Zambezi region," World Development, Elsevier, vol. 159(C).
    19. Simplice A. Asongu & Joseph Nnanna, 2019. "Dynamic Determinants of Access to Weapons: Global Evidence," Foreign Trade Review, , vol. 54(4), pages 334-354, November.
    20. Asiedu, Elizabeth & Azomahou, Théophile T. & Getachew, Yoseph & Yitbarek, Eleni, 2021. "Share the love: Parental bias, women empowerment and intergenerational mobility," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 846-867.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apecpp:v:44:y:2022:i:2:p:930-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2040-5804 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.