IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0255519.html
   My bibliography  Save this article

Multivariate random forest prediction of poverty and malnutrition prevalence

Author

Listed:
  • Chris Browne
  • David S Matteson
  • Linden McBride
  • Leiqiu Hu
  • Yanyan Liu
  • Ying Sun
  • Jiaming Wen
  • Christopher B Barrett

Abstract

Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies’ programming. However, state of the art models often rely on proprietary data and/or deep or transfer learning methods whose underlying mechanics may be challenging to interpret. We demonstrate how interpretable random forest models can produce estimates of a set of (potentially correlated) malnutrition and poverty prevalence measures using free, open access, regularly updated, georeferenced data. We demonstrate two use cases: contemporaneous prediction, which might be used for poverty mapping, geographic targeting, or monitoring and evaluation tasks, and a sequential nowcasting task that can inform early warning systems. Applied to data from 11 low and lower-middle income countries, we find predictive accuracy broadly comparable for both tasks to prior studies that use proprietary data and/or deep or transfer learning methods.

Suggested Citation

  • Chris Browne & David S Matteson & Linden McBride & Leiqiu Hu & Yanyan Liu & Ying Sun & Jiaming Wen & Christopher B Barrett, 2021. "Multivariate random forest prediction of poverty and malnutrition prevalence," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-23, September.
  • Handle: RePEc:plo:pone00:0255519
    DOI: 10.1371/journal.pone.0255519
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255519
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0255519&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0255519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binh Tang & Yanyan Liu & David S. Matteson, 2022. "Predicting poverty with vegetation index," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(2), pages 930-945, June.
    2. Beltramo, Theresa P. & Calvi, Rossella & De Giorgi, Giacomo & Sarr, Ibrahima, 2023. "Child poverty among refugees," World Development, Elsevier, vol. 171(C).
    3. Linden McBride & Christopher B. Barrett & Christopher Browne & Leiqiu Hu & Yanyan Liu & David S. Matteson & Ying Sun & Jiaming Wen, 2022. "Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(2), pages 879-892, June.
    4. Ola Hall & Francis Dompae & Ibrahim Wahab & Fred Mawunyo Dzanku, 2023. "A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(7), pages 1753-1768, October.
    5. Aziza Usmanova & Ahmed Aziz & Dilshodjon Rakhmonov & Walid Osamy, 2022. "Utilities of Artificial Intelligence in Poverty Prediction: A Review," Sustainability, MDPI, vol. 14(21), pages 1-39, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0255519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.