IDEAS home Printed from https://ideas.repec.org/a/wly/ajagec/v106y2024i2p547-572.html
   My bibliography  Save this article

Quantifying co‐benefits of water quality policies: An integrated assessment model of land and nitrogen management

Author

Listed:
  • Weizhe Weng
  • Kelly M. Cobourn
  • Armen R. Kemanian
  • Kevin J. Boyle
  • Yuning Shi
  • Jemma Stachelek
  • Charles White

Abstract

Due to the nature of nitrogen cycling, policies designed to address water quality concerns have the potential to provide benefits beyond the targeted water quality improvements. For example, actions to protect water quality by reducing nitrate leaching from agriculture also reduce emissions of nitrous oxide, a potent greenhouse gas. These positive effects, which are incidental to the regulation's intended target, are termed “co‐benefits.” To quantify the co‐benefits associated with reduced nitrate leaching, we integrate an economic model of farmer decision making with a model of terrestrial nitrogen cycling for the watershed surrounding Lake Mendota, Wisconsin, USA. Our modeling approach provides a framework that links air and water pollutants in an agri‐environmental system and offers a direction for future studies. Our model results highlight the finding that the co‐benefits from nitrous oxide abatement are substantial, and their inclusion increases the benefit–cost ratio of water quality policies. Consideration of these co‐benefits has the potential to reverse the conclusions of benefit–cost analysis in the assessment of current water quality policies.

Suggested Citation

  • Weizhe Weng & Kelly M. Cobourn & Armen R. Kemanian & Kevin J. Boyle & Yuning Shi & Jemma Stachelek & Charles White, 2024. "Quantifying co‐benefits of water quality policies: An integrated assessment model of land and nitrogen management," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 547-572, March.
  • Handle: RePEc:wly:ajagec:v:106:y:2024:i:2:p:547-572
    DOI: 10.1111/ajae.12423
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ajae.12423
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ajae.12423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A. Keiser & Joseph S. Shapiro, 2019. "US Water Pollution Regulation over the Past Half Century: Burning Waters to Crystal Springs?," Journal of Economic Perspectives, American Economic Association, vol. 33(4), pages 51-75, Fall.
    2. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    3. Woodward, Richard T., 2011. "Double-dipping in environmental markets," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 153-169, March.
    4. David A. Keiser, 2019. "The Missing Benefits of Clean Water and the Role of Mismeasured Pollution," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(4), pages 669-707.
    5. Catherine L. Kling, 2011. "Economic Incentives to Improve Water Quality in Agricultural Landscapes: Some New Variations on Old Ideas," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 297-309.
    6. Weng, Weizhe & Boyle, Kevin J. & Farrell, Kaitlin J. & Carey, Cayelan C. & Cobourn, Kelly M. & Dugan, Hilary A. & Hanson, Paul C. & Ward, Nicole K. & Weathers, Kathleen C., 2020. "Coupling Natural and Human Models in the Context of a Lake Ecosystem: Lake Mendota, Wisconsin, USA," Ecological Economics, Elsevier, vol. 169(C).
    7. Cloé Garnache & Pierre Mérel & Richard Howitt & Juhwan Lee, 2017. "Calibration of shadow values in constrained optimisation models of agricultural supply," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(3), pages 363-397.
    8. Pierre Mérel & Richard Howitt, 2014. "Theory and Application of Positive Mathematical Programming in Agriculture and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 451-470, October.
    9. John A. Downing & Stephen Polasky & Sheila M. Olmstead & Stephen C. Newbold, 2021. "Protecting local water quality has global benefits," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    10. Jiang, Fei & Drohan, Patrick J. & Cibin, Raj & Preisendanz, Heather E. & White, Charles M. & Veith, Tamie L., 2021. "Reallocating crop rotation patterns improves water quality and maintains crop yield," Agricultural Systems, Elsevier, vol. 187(C).
    11. Pierre Mérel & Leo K. Simon & Fujin Yi, 2011. "A Fully Calibrated Generalized Constant-Elasticity-of-Substitution Programming Model of Agricultural Supply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 936-948.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Weizhe & Cobourn, Kelly M. & Kemanian, Armen R. & Boyle, Kevin J. & Shi, Yuning & Stachelek, Joseph & White, Charles, 2020. "Quantifying Co-Benefits of Water Quality Policies: An Integrated Assessment Model of Nitrogen Management," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304667, Agricultural and Applied Economics Association.
    2. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    3. Umed Temurshoev & Marian Mraz & Luis Delgado Sancho & Peter Eder, 2015. "EU Petroleum Refining Fitness Check: OURSE Modelling and Results," JRC Research Reports JRC96207, Joint Research Centre.
    4. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    5. Umed Temurshoev & Fréderic Lantz, 2016. "Long-term petroleum product supply analysis through a robust modelling approach," Working Papers 2016-003, Universidad Loyola Andalucía, Department of Economics.
    6. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.
    7. Jonathan R. Sweeney & Richard E. Howitt & Hing Ling Chan & Minling Pan & PingSun Leung, 2017. "How do fishery policies affect Hawaii's longline fishing industry? Calibrating a positive mathematical programming model," Papers 1707.03960, arXiv.org.
    8. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    9. Aghabeygi, Mona & Louhichi, Kamel & Gomez y Paloma, Sergio, 2022. "Impacts of fertilizer subsidy reform options in Iran: an assessment using a Regional Crop Programming model," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 11(1), April.
    10. Siwa Msangi & Sarah Ann Cline, 2016. "Improving Groundwater Management for Indian Agriculture: Assessing Tradeoffs Across Policy Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    11. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    13. Kamel Louhichi & Aymeric Ricome & Sergio Gomez y Paloma, 2022. "Impacts of agricultural taxation in Sub‐Saharan Africa: Insights from agricultural produce cess in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 671-686, September.
    14. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    15. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    16. Mack, Gabriele & Ferjani, Ali & Mohring, Anke & Zimmerman, Albert & Mann, Stefan, 2015. "How did farmers act? An ex-post validation of normative and positive mathematical programming for an agent-based sector model," 2015 Conference, August 9-14, 2015, Milan, Italy 212201, International Association of Agricultural Economists.
    17. James Shortle & Richard D. Horan, 2013. "Policy Instruments for Water Quality Protection," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 111-138, June.
    18. Athanasios Petsakos & Stelios Rozakis, 2022. "Models and muddles: comment on ‘Calibration of agricultural risk programming models using positive mathematical programming’," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 713-728, July.
    19. Xuan Liu & Jun Duan & G. Cornelis van Kooten, 2018. "The impact of changes in the AgriStability program on crop activities: A farm modeling approach," Agribusiness, John Wiley & Sons, Ltd., vol. 34(3), pages 650-667, June.
    20. Pascal Tillie & Kamel Louhichi & Sergio Gomez-Y-Paloma, 2018. "La culture attelée dans le bassin cotonnier en Côte d'Ivoire. Analyse et modélisation des impacts d'un programme de relance de la culture attelée," JRC Research Reports JRC111027, Joint Research Centre.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ajagec:v:106:y:2024:i:2:p:547-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1467-8276 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.