IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i1p125-138.html
   My bibliography  Save this article

A nonparametric prior for simultaneous covariance estimation

Author

Listed:
  • Jeremy T. Gaskins
  • Michael J. Daniels

Abstract

In the modelling of longitudinal data from several groups, appropriate handling of the dependence structure is of central importance. Standard methods include specifying a single covariance matrix for all groups or independently estimating the covariance matrix for each group without regard to the others, but when these model assumptions are incorrect, these techniques can lead to biased mean effects or loss of efficiency, respectively. Thus, it is desirable to develop methods for simultaneously estimating the covariance matrix for each group that will borrow strength across groups in a way that is ultimately informed by the data. In addition, for several groups with covariance matrices of even medium dimension, it is difficult to manually select a single best parametric model among the huge number of possibilities given by incorporating structural zeros and/or commonality of individual parameters across groups. In this paper we develop a family of nonparametric priors using the matrix stick-breaking process of Dunson et al. (2008) that seeks to accomplish this task by parameterizing the covariance matrices in terms of their modified Cholesky decompositions (Pourahmadi, 1999). We establish some theoretical properties of these priors, examine their effectiveness via a simulation study, and illustrate the priors using data from a longitudinal clinical trial. Copyright 2013, Oxford University Press.

Suggested Citation

  • Jeremy T. Gaskins & Michael J. Daniels, 2013. "A nonparametric prior for simultaneous covariance estimation," Biometrika, Biometrika Trust, vol. 100(1), pages 125-138.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:125-138
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass060
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anasu Rabe & D. K. Shangodoyin & K. Thaga, 2019. "Linear Cholesky Decomposition Of Covariance Matrices In Mixed Models With Correlated Random Effects," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 59-70, December.
    2. Rabe Anasu & Shangodoyin D. K. & Thaga K., 2019. "Linear Cholesky Decomposition Of Covariance Matrices In Mixed Models With Correlated Random Effects," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 59-70, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:125-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.