IDEAS home Printed from https://ideas.repec.org/a/vrs/quageo/v36y2017i1p105-120n8.html
   My bibliography  Save this article

Mapping Spatio-Temporal Changes in Climatic Suitability of Corn in the Philippines under Future Climate Condition

Author

Listed:
  • Salvacion Arnold R.

    (Department of Community and Environmental Resource Planning, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines)

Abstract

This study assessed the spatio-temporal changes in corn climatic suitability in the Philippines under future climate condition. Using extracted climatic data from WorldClim database for the country under baseline and future climate condition, changes in corn suitability was assessed using fuzzy logic approach and published rainfall and temperature requirement of the crop. Based on the data, the large portion of the country will experience increase in monthly total rainfall (88%) while increase in monthly mean and minimum temperature under future climate condition is projected for the entire country. These increases in rainfall and temperature resulted in changes of corn climatic suitability in the country depending on the month and location. On the average, changes in rainfall resulted in reduction (8%) and improvement (6%) in corn suitability while increase in temperature resulted in 5% and 0.4% reduction and improvement, respectively.

Suggested Citation

  • Salvacion Arnold R., 2017. "Mapping Spatio-Temporal Changes in Climatic Suitability of Corn in the Philippines under Future Climate Condition," Quaestiones Geographicae, Sciendo, vol. 36(1), pages 105-120, March.
  • Handle: RePEc:vrs:quageo:v:36:y:2017:i:1:p:105-120:n:8
    DOI: 10.1515/quageo-2017-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/quageo-2017-0008
    Download Restriction: no

    File URL: https://libkey.io/10.1515/quageo-2017-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerpacio, Roberta V. & Labios, Jocelyn D. & Labios, Romeo V. & Diangkinay, Emma I., 2004. "Maize in the Philippines: Production Systems, Constraints, and Research Priorities," Maize Production Systems Papers 7650, CIMMYT: International Maize and Wheat Improvement Center.
    2. Balezentiene, Ligita & Streimikiene, Dalia & Balezentis, Tomas, 2013. "Fuzzy decision support methodology for sustainable energy crop selection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 83-93.
    3. Fand, Babasaheb B. & Tonnang, Henri E.Z. & Kumar, Mahesh & Bal, Santanu K. & Singh, Naveen P. & Rao, D.V.K.N. & Kamble, Ankush L. & Nangare, Dhananjay D. & Minhas, Paramjit S., 2014. "Predicting the impact of climate change on regional and seasonal abundance of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) using temperature-driven phenology model linked to," Ecological Modelling, Elsevier, vol. 288(C), pages 62-78.
    4. Islam, Adlul & Ahuja, Lajpat R. & Garcia, Luis A. & Ma, Liwang & Saseendran, Anapalli S. & Trout, Thomas J., 2012. "Modeling the impacts of climate change on irrigated corn production in the Central Great Plains," Agricultural Water Management, Elsevier, vol. 110(C), pages 94-108.
    5. Meza, Francisco J. & Silva, Daniel & Vigil, Hernan, 2008. "Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative," Agricultural Systems, Elsevier, vol. 98(1), pages 21-30, July.
    6. Sicat, Rodrigo S. & Carranza, Emmanuel John M. & Nidumolu, Uday Bhaskar, 2005. "Fuzzy modeling of farmers' knowledge for land suitability classification," Agricultural Systems, Elsevier, vol. 83(1), pages 49-75, January.
    7. Reshmidevi, T.V. & Eldho, T.I. & Jana, R., 2009. "A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds," Agricultural Systems, Elsevier, vol. 101(1-2), pages 101-109, June.
    8. Hijmans, R. J. & Condori, B. & Carrillo, R. & Kropff, M. J., 2003. "A quantitative and constraint-specific method to assess the potential impact of new agricultural technology: the case of frost resistant potato for the Altiplano (Peru and Bolivia)," Agricultural Systems, Elsevier, vol. 76(3), pages 895-911, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vema, Vamsikrishna & Sudheer, K.P. & Chaubey, I., 2019. "Fuzzy inference system for site suitability evaluation of water harvesting structures in rainfed regions," Agricultural Water Management, Elsevier, vol. 218(C), pages 82-93.
    2. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    3. Pilehforooshha, Parastoo & Karimi, Mohammad & Taleai, Mohammad, 2014. "A GIS-based agricultural land-use allocation model coupling increase and decrease in land demand," Agricultural Systems, Elsevier, vol. 130(C), pages 116-125.
    4. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
    5. Mahmoud Rezaei & Farshad Amiraslani & Najmeh Neysani Samani & Kazem Alavipanah, 2020. "Application of two fuzzy models using knowledge-based and linear aggregation approaches to identifying flooding-prone areas in Tehran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 363-385, January.
    6. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    7. Baland, Jean-Marie & Bequet, Ludovic & Guirkinger, Catherine & Manuel, Clarice, 2024. "Sharing norm, household efficiency and female demand for agency in the Philippines," World Development, Elsevier, vol. 174(C).
    8. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Azam Lashkari & Amin Alizadeh & Ehsan Rezaei & Mohammad Bannayan, 2012. "Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 1-16, January.
    10. Bathan, Bates M. & Gordoncillo, Prudenciano U., 2017. "Determinants of Credit Constraint Among Corn Farmers in Isabela Province, Philippines," Journal of Economics, Management & Agricultural Development, Journal of Economics, Management & Agricultural Development (JEMAD), vol. 3(2), December.
    11. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    13. Hamna Butt & Sadia Sheikh & Hafsah Batool & Muneeb Aamir, 2021. "Yield Verses Sowing Dates," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(4), pages 99-105, December.
    14. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    15. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    16. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    17. Caramugan, Karlo Martin & Bayacag, Purisima, 2016. "Price Bubble in Selected ASEAN Agricultural Exports: An Application of the Generalized Supremum Augmented Dickey Fuller," MPRA Paper 74807, University Library of Munich, Germany.
    18. Dennis Junior Choruma & Frank Chukwuzuoke Akamagwuna & Nelson Oghenekaro Odume, 2022. "Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 12(6), pages 1-24, May.
    19. Sangam Shrestha & Proloy Deb & Thi Bui, 2016. "Adaptation strategies for rice cultivation under climate change in Central Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 15-37, January.
    20. He, Juan & Zheng, Xiaoyong & Rejesus, Roderick M. & Yorobe Jr., Jose M., 2019. "Moral hazard and adverse selection effects of cost-of-production crop insurance: evidence from the Philippines," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(1), January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:quageo:v:36:y:2017:i:1:p:105-120:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.