IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v32y2016i1p29-73n2.html
   My bibliography  Save this article

Respondent-Driven Sampling – Testing Assumptions: Sampling with Replacement

Author

Listed:
  • Barash Vladimir D.

    (Graphika Inc., 116 West 23rd Street, 5th Floor, New York NY 10011, U.S.A.)

  • Cameron Christopher J.

    (Cornell University – Sociology, 344 Uris Hall Ithaca, New York 14853, U.S.A.)

  • Spiller Michael W.

    (Cornell University – Sociology, 344 Uris Hall, Ithaca, New York 14853, U.S.A.)

  • Heckathorn Douglas D.

    (Cornell University – Sociology, 344 Uris Hall Ithaca, New York 14853, U.S.A.)

Abstract

Classical Respondent-Driven Sampling (RDS) estimators are based on a Markov Process model in which sampling occurs with replacement. Given that respondents generally cannot be interviewed more than once, this assumption is counterfactual. We join recent work by Gile and Handcock in exploring the implications of the sampling-with-replacement assumption for bias of RDS estimators. We differ from previous studies in examining a wider range of sampling fractions and in using not only simulations but also formal proofs. One key finding is that RDS estimates are surprisingly stable even in the presence of substantial sampling fractions. Our analyses show that the sampling-with-replacement assumption is a minor contributor to bias for sampling fractions under 40%, and bias is negligible for the 20% or smaller sampling fractions typical of field applications of RDS.

Suggested Citation

  • Barash Vladimir D. & Cameron Christopher J. & Spiller Michael W. & Heckathorn Douglas D., 2016. "Respondent-Driven Sampling – Testing Assumptions: Sampling with Replacement," Journal of Official Statistics, Sciendo, vol. 32(1), pages 29-73, March.
  • Handle: RePEc:vrs:offsta:v:32:y:2016:i:1:p:29-73:n:2
    DOI: 10.1515/jos-2016-0002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jos-2016-0002
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jos-2016-0002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gile, Krista J., 2011. "Improved Inference for Respondent-Driven Sampling Data With Application to HIV Prevalence Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 135-146.
    2. Wallace, Rodrick, 1991. "Social disintegration and the spread of AIDS: Thresholds for propagation along 'sociogeographic' networks," Social Science & Medicine, Elsevier, vol. 33(10), pages 1155-1162, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    2. Fatemi, Samira & Salehi, Mostafa & Veisi, Hadi & Jalili, Mahdi, 2018. "A fuzzy logic based estimator for respondent driven sampling of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 42-51.
    3. Chien-Min Huang & F. Jay Breidt, 2023. "A dual-frame approach for estimation with respondent-driven samples," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 65-81, April.
    4. Lisa Avery & Alison Macpherson & Sarah Flicker & Michael Rotondi, 2021. "A review of reported network degree and recruitment characteristics in respondent driven sampling implications for applied researchers and methodologists," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    5. Dongah Kim & Krista J. Gile & Honoria Guarino & Pedro Mateu‐Gelabert, 2021. "Inferring bivariate association from respondent‐driven sampling data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 415-433, March.
    6. Florence Samkange-Zeeb & Ronja Foraita & Stefan Rach & Tilman Brand, 2019. "Feasibility of using respondent-driven sampling to recruit participants in superdiverse neighbourhoods for a general health survey," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 64(3), pages 451-459, April.
    7. Malmros Jens & Masuda Naoki & Britton Tom, 2016. "Random Walks on Directed Networks: Inference and Respondent-Driven Sampling," Journal of Official Statistics, Sciendo, vol. 32(2), pages 433-459, June.
    8. Yakir Berchenko & Jonathan D. Rosenblatt & Simon D. W. Frost, 2017. "Modeling and analyzing respondent‐driven sampling as a counting process," Biometrics, The International Biometric Society, vol. 73(4), pages 1189-1198, December.
    9. Joseph Gibbons & Tse-Chuan Yang & Elizabeth Brault & Michael Barton, 2020. "Evaluating Residential Segregation’s Relation to the Clustering of Poor Health across American Cities," IJERPH, MDPI, vol. 17(11), pages 1-18, June.
    10. Merli, M. Giovanna & Moody, James & Smith, Jeffrey & Li, Jing & Weir, Sharon & Chen, Xiangsheng, 2015. "Challenges to recruiting population representative samples of female sex workers in China using Respondent Driven Sampling," Social Science & Medicine, Elsevier, vol. 125(C), pages 79-93.
    11. Nicky McCreesh & Andrew Copas & Janet Seeley & Lisa G Johnston & Pam Sonnenberg & Richard J Hayes & Simon D W Frost & Richard G White, 2013. "Respondent Driven Sampling: Determinants of Recruitment and a Method to Improve Point Estimation," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    12. Aronow, Peter M. & Crawford, Forrest W., 2015. "Nonparametric identification for respondent-driven sampling," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 100-102.
    13. Ali Mirzazadeh & Yea-Hung Chen & Jess Lin & Katie Burk & Erin C Wilson & Desmond Miller & Danielle Veloso & Willi McFarland & Meghan D Morris, 2021. "Progress toward closing gaps in the hepatitis C virus cascade of care for people who inject drugs in San Francisco," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-11, April.
    14. Thespina J. Yamanis & M. Giovanna Merli & William Whipple Neely & Felicia Feng Tian & James Moody & Xiaowen Tu & Ersheng Gao, 2013. "An Empirical Analysis of the Impact of Recruitment Patterns on RDS Estimates among a Socially Ordered Population of Female Sex Workers in China," Sociological Methods & Research, , vol. 42(3), pages 392-425, August.
    15. Mart L Stein & Vincent Buskens & Peter G M van der Heijden & Jim E van Steenbergen & Albert Wong & Martin C J Bootsma & Mirjam E E Kretzschmar, 2018. "A stochastic simulation model to study respondent-driven recruitment," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    16. Hernández, Hugo & Quiroz, Gabriel & Zambrano, Omar & Zanoni, Wladimir, 2023. "Measuring Labor Market Discrimination against LGTBQ+ in the Case of Ecuador: A Field Experiment," IDB Publications (Working Papers) 12977, Inter-American Development Bank.
    17. Zanoni, Wladimir & Fabregas, Raissa, 2024. "The Migrant Penalty in Latin America: Experimental Evidence from Job Recruiters," IDB Publications (Working Papers) 13804, Inter-American Development Bank.
    18. Mark S. Handcock & Krista J. Gile & Corinne M. Mar, 2015. "Estimating the size of populations at high risk for HIV using respondent-driven sampling data," Biometrics, The International Biometric Society, vol. 71(1), pages 258-266, March.
    19. Schonlau, Matthias & Liebau, Elisabeth, 2012. "Respondent-Driven Sampling," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(1), pages 72-93.
    20. Lee Sunghee & Suzer-Gurtekin Tuba & Wagner James & Valliant Richard, 2017. "Total Survey Error and Respondent Driven Sampling: Focus on Nonresponse and Measurement Errors in the Recruitment Process and the Network Size Reports and Implications for Inferences," Journal of Official Statistics, Sciendo, vol. 33(2), pages 335-366, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:32:y:2016:i:1:p:29-73:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.