IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v81y2023i1d10.1007_s40300-023-00241-8.html
   My bibliography  Save this article

A dual-frame approach for estimation with respondent-driven samples

Author

Listed:
  • Chien-Min Huang

    (Colorado State University)

  • F. Jay Breidt

    (NORC at the University of Chicago)

Abstract

Respondent-driven sampling (RDS) is an increasingly common method for surveying rare, hidden, or otherwise hard-to-reach populations. Instead of formal probability sampling from a well-defined frame, RDS relies on respondents themselves to recruit additional participants through their own social networks. By necessity, RDS is often initiated with a small, non-random sample. Standard RDS estimators have been developed under strong assumptions on the diffusion of sampling through the network over multiple waves of recruitment. We consider an alternative setting in which these assumptions are not met, and instead a large probability sample is used to initiate RDS and only a few waves of recruitment take place. In this setting, we develop dual-frame estimators that use both known inclusion probabilities from the initial sampling design and estimated inclusion probabilities from RDS, treated as a nonprobability sample. In a simulation study using network data from the Project 90 study, our dual-frame estimators perform well relative to standard RDS alternatives, across a wide range of recruitment behaviors. We propose a simple variance estimator that yields stable estimates and reasonable confidence interval coverage. Finally, we apply our dual-frame estimators to a real RDS study of smoking behavior among lesbian, gay, bisexual, and transgender (LGBT) adults.

Suggested Citation

  • Chien-Min Huang & F. Jay Breidt, 2023. "A dual-frame approach for estimation with respondent-driven samples," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 65-81, April.
  • Handle: RePEc:spr:metron:v:81:y:2023:i:1:d:10.1007_s40300-023-00241-8
    DOI: 10.1007/s40300-023-00241-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-023-00241-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-023-00241-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gile, Krista J., 2011. "Improved Inference for Respondent-Driven Sampling Data With Application to HIV Prevalence Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 135-146.
    2. Yilin Chen & Pengfei Li & Changbao Wu, 2020. "Doubly Robust Inference With Nonprobability Survey Samples," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2011-2021, December.
    3. Jae Kwang Kim & Seho Park & Yilin Chen & Changbao Wu, 2021. "Combining non‐probability and probability survey samples through mass imputation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 941-963, July.
    4. Michaels Stuart & Pineau Vicki & Reimer Becky & Ganesh Nadarajasundaram & Dennis J. Michael, 2019. "Test of a Hybrid Method of Sampling the LGBT Population: Web Respondent Driven Sampling with Seeds from a Probability Sample," Journal of Official Statistics, Sciendo, vol. 35(4), pages 731-752, December.
    5. Jae Kwang Kim & Zhonglei Wang, 2019. "Sampling Techniques for Big Data Analysis," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 177-191, May.
    6. Jae‐Kwang Kim & Siu‐Ming Tam, 2021. "Data Integration by Combining Big Data and Survey Sample Data for Finite Population Inference," International Statistical Review, International Statistical Institute, vol. 89(2), pages 382-401, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Giovanna Ranalli & Jean-François Beaumont & Gaia Bertarelli & Natalie Shlomo, 2023. "Foreword to the special issue on “Survey Methods for Statistical Data Integration and New Data Sources”," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 1-3, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ieva Burakauskaitė & Andrius Čiginas, 2023. "An Approach to Integrating a Non-Probability Sample in the Population Census," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    2. Sixia Chen & Alexandra May Woodruff & Janis Campbell & Sara Vesely & Zheng Xu & Cuyler Snider, 2023. "Combining Probability and Nonprobability Samples by Using Multivariate Mass Imputation Approaches with Application to Biomedical Research," Stats, MDPI, vol. 6(2), pages 1-9, May.
    3. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    4. Garcia Maria del Mar Rueda, 2023. "Book Review: Silvia Biffignandi and Jelke Bethlehem. Handbook of Web Surveys, 2nd edition. 2021 Wiley, ISBN: 978-1-119-37168-7, 624 pps," Journal of Official Statistics, Sciendo, vol. 39(4), pages 591-595, December.
    5. J. N. K. Rao, 2021. "On Making Valid Inferences by Integrating Data from Surveys and Other Sources," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 242-272, May.
    6. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    7. Yakir Berchenko & Jonathan D. Rosenblatt & Simon D. W. Frost, 2017. "Modeling and analyzing respondent‐driven sampling as a counting process," Biometrics, The International Biometric Society, vol. 73(4), pages 1189-1198, December.
    8. Ramón Ferri-García & Jean-François Beaumont & Keven Bosa & Joanne Charlebois & Kenneth Chu, 2022. "Weight smoothing for nonprobability surveys," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 619-643, September.
    9. Daniele Cuntrera & Vincenzo Falco & Ornella Giambalvo, 2022. "On the Sampling Size for Inverse Sampling," Stats, MDPI, vol. 5(4), pages 1-15, November.
    10. Xinyu Li & Wang Miao & Fang Lu & Xiao‐Hua Zhou, 2023. "Improving efficiency of inference in clinical trials with external control data," Biometrics, The International Biometric Society, vol. 79(1), pages 394-403, March.
    11. Luis Castro-Martín & María del Mar Rueda & Ramón Ferri-García & César Hernando-Tamayo, 2021. "On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures," Mathematics, MDPI, vol. 9(23), pages 1-23, November.
    12. María del Mar Rueda & Sergio Martínez-Puertas & Luis Castro-Martín, 2022. "Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles," Mathematics, MDPI, vol. 10(24), pages 1-19, December.
    13. Nicky McCreesh & Andrew Copas & Janet Seeley & Lisa G Johnston & Pam Sonnenberg & Richard J Hayes & Simon D W Frost & Richard G White, 2013. "Respondent Driven Sampling: Determinants of Recruitment and a Method to Improve Point Estimation," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    14. Aronow, Peter M. & Crawford, Forrest W., 2015. "Nonparametric identification for respondent-driven sampling," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 100-102.
    15. Ali Mirzazadeh & Yea-Hung Chen & Jess Lin & Katie Burk & Erin C Wilson & Desmond Miller & Danielle Veloso & Willi McFarland & Meghan D Morris, 2021. "Progress toward closing gaps in the hepatitis C virus cascade of care for people who inject drugs in San Francisco," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-11, April.
    16. Thespina J. Yamanis & M. Giovanna Merli & William Whipple Neely & Felicia Feng Tian & James Moody & Xiaowen Tu & Ersheng Gao, 2013. "An Empirical Analysis of the Impact of Recruitment Patterns on RDS Estimates among a Socially Ordered Population of Female Sex Workers in China," Sociological Methods & Research, , vol. 42(3), pages 392-425, August.
    17. Ramón Ferri-García & María del Mar Rueda & Andrés Cabrera-León, 2021. "Self-Perceived Health, Life Satisfaction and Related Factors among Healthcare Professionals and the General Population: Analysis of an Online Survey, with Propensity Score Adjustment," Mathematics, MDPI, vol. 9(7), pages 1-27, April.
    18. Kamlesh Kumar Pandey & Diwakar Shukla, 2022. "Stratified linear systematic sampling based clustering approach for detection of financial risk group by mining of big data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1239-1253, June.
    19. Zanoni, Wladimir & Fabregas, Raissa, 2024. "The Migrant Penalty in Latin America: Experimental Evidence from Job Recruiters," IDB Publications (Working Papers) 13804, Inter-American Development Bank.
    20. Schonlau, Matthias & Liebau, Elisabeth, 2012. "Respondent-Driven Sampling," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(1), pages 72-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:81:y:2023:i:1:d:10.1007_s40300-023-00241-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.