IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v30y2014i3p15n7.html
   My bibliography  Save this article

Panel Attrition: How Important is Interviewer Continuity?

Author

Listed:
  • Lynn Peter

    (Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK)

  • Kaminska Olena

    (Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK)

  • Goldstein Harvey

    (Centre for Multilevel Modelling, University of Bristol. Tyndall Avenue, Bristol, BS8 1TH, UK)

Abstract

We assess whether the probability of a sample member cooperating at a particular wave of a panel survey is greater if the same interviewer is deployed as at the previous wave. Previous research on this topic mainly uses nonexperimental data. Consequently, a) interviewer change is generally nonrandom, and b) continuing interviewers are more experienced by the time of the next wave. Our study is based on a balanced experiment in which both interviewer continuity and experience are controlled. Multilevel multiple membership models are used to explore the effects of interviewer continuity on refusal rate as well as interactions of interviewer continuity with other variables. We find that continuity reduces refusal propensity for younger respondents but not for older respondents, and that this effect depends on the age of the interviewer. This supports the notion that interviewer continuity may be beneficial in some situations, but not necessarily in others.

Suggested Citation

  • Lynn Peter & Kaminska Olena & Goldstein Harvey, 2014. "Panel Attrition: How Important is Interviewer Continuity?," Journal of Official Statistics, Sciendo, vol. 30(3), pages 443-457, September.
  • Handle: RePEc:vrs:offsta:v:30:y:2014:i:3:p:15:n:7
    DOI: 10.2478/jos-2014-0028
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2014-0028
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2014-0028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lynn, Peter, 2012. "The propensity of older respondents to participate in a general purpose survey," Understanding Society Working Paper Series 2012-03, Understanding Society at the Institute for Social and Economic Research.
    2. Pamela Campanelli & Colm O'Muircheartaigh, 2002. "The Importance of Experimental Control in Testing the Impact of Interviewer Continuity on Panel Survey Nonresponse," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(2), pages 129-144, May.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadig, Husam, 2014. "Weighting for non-monotonic response pattern in longitudinal surveys," ISER Working Paper Series 2014-34, Institute for Social and Economic Research.
    2. Adrian Chadi, 2019. "Dissatisfied with life or with being interviewed? Happiness and the motivation to participate in a survey," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(3), pages 519-553, October.
    3. Peter Lynn & Pablo Cabrera‐Álvarez & Paul Clarke, 2023. "Sample composition and representativeness on Understanding Society," Fiscal Studies, John Wiley & Sons, vol. 44(4), pages 341-359, December.
    4. Tiffany S. Neman, 2023. "When and Why Does Nonresponse Occur? Comparing the Determinants of Initial Unit Nonresponse and Panel Attrition," Working Papers 23-44, Center for Economic Studies, U.S. Census Bureau.
    5. Lagorio, Carlos, 2016. "Call and response: modelling longitudinal contact and cooperation using Wave 1 call records data," Understanding Society Working Paper Series 2016-01, Understanding Society at the Institute for Social and Economic Research.
    6. Plewis Ian & Shlomo Natalie, 2017. "Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies," Journal of Official Statistics, Sciendo, vol. 33(3), pages 753-779, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    4. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    5. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    6. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    7. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    8. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    9. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    10. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    11. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    12. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    13. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    14. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    15. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    16. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    17. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    18. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    19. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    20. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:30:y:2014:i:3:p:15:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.