IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v29y2013i4p539-555n4.html
   My bibliography  Save this article

A Contamination Model for Selective Editing

Author

Listed:
  • Di Zio Marco

    (ISTAT, Italian National Institute of Statistics, Via Cesare Balbo 16, 00184 Rome, Italy.)

  • Guarnera Ugo

    (ISTAT, Italian National Institute of Statistics, Via Cesare Balbo 16, 00184 Rome, Italy)

Abstract

The aim of selective editing is to identify observations affected by influential errors. A score function based on the impact of the potential error on target estimates is useful to prioritize observations for accurate reviewing. We assume a Gaussian model for true data and an “intermittent” error mechanism such that a proportion of data is contaminated by an additive Gaussian error. In this setting, scores can be related to the expected value of errors affecting data. Consequently, a set of units can be selected such that the expected residual error in data is below a prefixed threshold. In the context of economic surveys when positive variables are analyzed, the method is more realistically applied to logarithms of data instead of data in their original scale. The method is illustrated through an experimental study on real business survey data where contamination is simulated according to error mechanisms frequently encountered in the practical context of economic surveys.

Suggested Citation

  • Di Zio Marco & Guarnera Ugo, 2013. "A Contamination Model for Selective Editing," Journal of Official Statistics, Sciendo, vol. 29(4), pages 539-555, December.
  • Handle: RePEc:vrs:offsta:v:29:y:2013:i:4:p:539-555:n:4
    DOI: 10.2478/jos-2013-0039
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2013-0039
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2013-0039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leopold Granquist, 1997. "The New View on Editing," International Statistical Review, International Statistical Institute, vol. 65(3), pages 381-387, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Waal Ton, 2013. "Selective Editing: A Quest for Efficiency and Data Quality," Journal of Official Statistics, Sciendo, vol. 29(4), pages 473-488, December.
    2. George Petrakos & Claudio Conversano & Gregory Farmakis & Francesco Mola & Roberta Siciliano & Photis Stavropoulos, 2004. "New ways of specifying data edits," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 249-274, May.
    3. Arbue´s Ignacio & Revilla Pedro & Salgado David, 2013. "An Optimization Approach to Selective Editing," Journal of Official Statistics, Sciendo, vol. 29(4), pages 489-510, December.
    4. Valentin Todorov & Matthias Templ & Peter Filzmoser, 2011. "Detection of multivariate outliers in business survey data with incomplete information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(1), pages 37-56, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:29:y:2013:i:4:p:539-555:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.