IDEAS home Printed from https://ideas.repec.org/p/hhs/oruesi/2025_003.html
   My bibliography  Save this paper

Estimation with probability edited survey data under nonresponse

Author

Listed:

Abstract

Probabilistic editing has been introduced to enable valid inference using established survey sampling theory in situations when some of the collected data points may have measurement errors and are therefore submitted to an editing process. To reduce the editing e ort and avoid over-editing, in current practice selective editing is most often used, which is a form of editing that limits the edit checks to those potential errors that, if indeed in error, are likely to have the biggest impact on estimates to be produced. However, selective editing is not grounded in probability theory associated with survey sampling, and cannot provide expressions for point and variance estimates that account for the uncertainties introduced by selective editing. In the spirit of the total survey error paradigm, this paper extends the previous work on probabilistic editing by proposing an estimation procedure that provides valid inference when two kinds of nonsampling error are simultaneously present, in addition to the sampling error: the measurement error, requiring an editing step, and the practically unavoidable nonresponse error which also needs to be taken into account when producing unbiased estimates. In a three-phase selection setup, bias due to measurement error is estimated through probabilistic editing while weight adjustment employing auxiliary information is used to deal with nonresponse. An estimator based on calibration for nonresponse and corrected for bias due to measurement error is introduced. Its theoretical variance and an estimator of the variance are derived. A simulation study illustrates the three-phase selection setup and the practical performance of the derived point and variance estimators.

Suggested Citation

  • Ilves, Maiki, 2025. "Estimation with probability edited survey data under nonresponse," Working Papers 2025:3, Örebro University, School of Business.
  • Handle: RePEc:hhs:oruesi:2025_003
    as

    Download full text from publisher

    File URL: https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2025/wp-3-2025.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph W. Sakshaug & Jonas Beste & Mark Trappmann, 2023. "Effects of mixing modes on nonresponse and measurement error in an economic panel survey," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 57(1), pages 1-16, December.
    2. Sakshaug, Joseph & Beste, Jonas & Trappmann, Mark, 2023. "Effects of mixing modes on nonresponse and measurement error in an economic panel survey," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-2.
    3. Robert M. Groves & Steven G. Heeringa, 2006. "Responsive design for household surveys: tools for actively controlling survey errors and costs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 439-457, July.
    4. Willem E. Saris & Melanie Revilla, 2016. "Correction for Measurement Errors in Survey Research: Necessary and Possible," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 127(3), pages 1005-1020, July.
    5. Leopold Granquist, 1997. "The New View on Editing," International Statistical Review, International Statistical Institute, vol. 65(3), pages 381-387, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felderer, Barbara & Repke, Lydia & Weber, Wiebke & Schweisthal, jonas & Bothmann, Ludwig, 2024. "Predicting the Validity and Reliability of Survey Questions," OSF Preprints hkngd, Center for Open Science.
    2. Reza C. Daniels, 2012. "A Framework for Investigating Micro Data Quality, with Application to South African Labour Market Household Surveys," SALDRU Working Papers 90, Southern Africa Labour and Development Research Unit, University of Cape Town.
    3. Reist, Benjamin M. & Rodhouse, Joseph B. & Ball, Shane T. & Young, Linda J., 2019. "Subsampling of Nonrespondents in the 2017 Census of Agriculture," NASS Research Reports 322826, United States Department of Agriculture, National Agricultural Statistics Service.
    4. Jiayun Jin & Caroline Vandenplas & Geert Loosveldt, 2019. "The Evaluation of Statistical Process Control Methods to Monitor Interview Duration During Survey Data Collection," SAGE Open, , vol. 9(2), pages 21582440198, June.
    5. Roger Tourangeau & J. Michael Brick & Sharon Lohr & Jane Li, 2017. "Adaptive and responsive survey designs: a review and assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 203-223, January.
    6. repec:iab:iabfda:201307(en is not listed on IDEAS
    7. Roberts Caroline & Vandenplas Caroline & Herzing Jessica M.E., 2020. "A Validation of R-Indicators as a Measure of the Risk of Bias using Data from a Nonresponse Follow-Up Survey," Journal of Official Statistics, Sciendo, vol. 36(3), pages 675-701, September.
    8. Böhme, Marcus & Stöhr, Tobias, 2012. "Guidelines for the use of household interview duration analysis in CAPI survey management," Kiel Working Papers 1779, Kiel Institute for the World Economy (IfW Kiel).
    9. Durrant Gabriele B. & Maslovskaya Olga & Smith Peter W. F., 2017. "Using Prior Wave Information and Paradata: Can They Help to Predict Response Outcomes and Call Sequence Length in a Longitudinal Study?," Journal of Official Statistics, Sciendo, vol. 33(3), pages 801-833, September.
    10. Holly Matulewicz & Eric Grau & Arif Mamun & Gina Livermore, "undated". "Promoting Readiness of Minors in Supplemental Security Income (PROMISE): PROMISE 60-Month Sampling and Survey Plan," Mathematica Policy Research Reports be402161c12e402392af9182e, Mathematica Policy Research.
    11. Sofie Marien & Marc Hooghe & Ellen Quintelier, 2010. "Inequalities in Non‐institutionalised Forms of Political Participation: A Multi‐level Analysis of 25 countries," Political Studies, Political Studies Association, vol. 58(1), pages 187-213, February.
    12. Willems, Jurgen, 2015. "Individual perceptions on the participant and societal functionality of non-formal education for youth: Explaining differences across countries based on the human development index," International Journal of Educational Development, Elsevier, vol. 44(C), pages 11-20.
    13. Stephanie Coffey, PhD. & Jaya Damineni & John Eltinge, PhD. & Anup Mathur, PhD. & Kayla Varela & Allison Zotti, 2023. "Some Open Questions on Multiple-Source Extensions of Adaptive-Survey Design Concepts and Methods," Working Papers 23-03, Center for Economic Studies, U.S. Census Bureau.
    14. Durrant, Gabriele B. & D'Arrigo, Julia & Steele, Fiona, 2011. "Using field process data to predict best times of contact conditioning on household and interviewer influences," LSE Research Online Documents on Economics 52201, London School of Economics and Political Science, LSE Library.
    15. Heng Chen & Geoffrey Dunbar & Q. Rallye Shen, 2020. "The Mode is the Message: Using Predata as Exclusion Restrictions to Evaluate Survey Design," Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 341-357, Emerald Group Publishing Limited.
    16. Thompson Katherine Jenny & Kaputa Stephen J., 2017. "Investigating Adaptive Nonresponse Follow-up Strategies for Small Businesses through Embedded Experiments," Journal of Official Statistics, Sciendo, vol. 33(3), pages 835-856, September.
    17. Beaumont Jean-Francois & Bocci Cynthia & Haziza David, 2014. "An Adaptive Data Collection Procedure for Call Prioritization," Journal of Official Statistics, Sciendo, vol. 30(4), pages 607-621, December.
    18. Lynn, Peter & Jäckle, Annette & G. Blom, Annelies, 2008. "Understanding cross-national differences in unit non-response: the role of contact data," ISER Working Paper Series 2008-01, Institute for Social and Economic Research.
    19. J. N. K. Rao, 2021. "On Making Valid Inferences by Integrating Data from Surveys and Other Sources," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 242-272, May.
    20. Lundquist Peter & Särndal Carl-Erik, 2013. "Aspects of Responsive Design with Applications to the Swedish Living Conditions Survey," Journal of Official Statistics, Sciendo, vol. 29(4), pages 557-582, December.
    21. Gonzalez Jeffrey M. & Eltinge John L., 2016. "Discussion," Journal of Official Statistics, Sciendo, vol. 32(2), pages 295-300, June.

    More about this item

    Keywords

    nonsampling errors; probabilistic editing; selective editing; calibration estimator; measurement bias estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2025_003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.