IDEAS home Printed from https://ideas.repec.org/a/vrs/mgrsod/v28y2024i3p112-126n1002.html
   My bibliography  Save this article

Visual analysis of changes in European air transport during the COVID-19 pandemic from interactive maps

Author

Listed:
  • Abilpatta Yerkanat

    (Department of Geoinformatics, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia)

  • Voženílek Vít

    (Department of Geoinformatics and Cartography, Faculty of Earth Sciences and Spatial Management, University of Maria Curie Sklodowska, Lublin, Poland)

Abstract

The paper explores the substantial decline in European air transport during 2020, while employing interactive maps for visual analysis. According to the International Civil Aviation Organization’s (2020) economic analysis, there was a sharp 60% global reduction in passenger traffic during the combined second, third, and fourth quarters, equivalent to about 2.7 billion fewer passengers than in 2019. The established air traffic flow, which developed over decades, faced partial disruption due to COVID-19 restrictions. Consequently, the aviation industry strategically focused on restructuring to ensure the sustained operation of major air transport routes. Using OpenSky Network data and a Google Sheets environment for storage, our study utilizes the FlowmapBlue interactive platform to visualize the 2020 European airspace, and to define key air traffic corridors. Despite the substantial decline, the visualization reveals resilient routes and crucial connections, underscoring the imperative of preserving these links for effective crisis response in the future.

Suggested Citation

  • Abilpatta Yerkanat & Voženílek Vít, 2024. "Visual analysis of changes in European air transport during the COVID-19 pandemic from interactive maps," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 28(3), pages 112-126.
  • Handle: RePEc:vrs:mgrsod:v:28:y:2024:i:3:p:112-126:n:1002
    DOI: 10.2478/mgrsd-2023-0038
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/mgrsd-2023-0038
    Download Restriction: no

    File URL: https://libkey.io/10.2478/mgrsd-2023-0038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Agnieszka Barczak & Izabela Dembińska & Dorota Rozmus & Katarzyna Szopik-Depczyńska, 2022. "The Impact of COVID-19 Pandemic on Air Transport Passenger Markets-Implications for Selected EU Airports Based on Time Series Models Analysis," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    2. Nielsen, Thomas Alexander Sick & Hovgesen, Henrik Harder, 2008. "Exploratory mapping of commuter flows in England and Wales," Journal of Transport Geography, Elsevier, vol. 16(2), pages 90-99.
    3. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    4. Xiaole Zhang & Xi Chen & Jing Wang, 2019. "A number-based inventory of size-resolved black carbon particle emissions by global civil aviation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    3. Yin Huang & Runda Liu & Shumin Huang & Gege Yang & Xiaofan Zhang & Yin Qin & Lisha Mao & Sishi Sheng & Biao Huang, 2021. "Imbalance and breakout in the post-epidemic era: Research into the spatial patterns of freight demand network in six provinces of central China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-18, April.
    4. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    5. DECOVILLE Antoine & DURAND Frédéric & SOHN Christophe & WALTHER Olivier, 2010. "Spatial integration in European cross-border metropolitan regions: A comparative approach," LISER Working Paper Series 2010-40, Luxembourg Institute of Socio-Economic Research (LISER).
    6. Dewulf, Bart & Neutens, Tijs & Vanlommel, Mario & Logghe, Steven & De Maeyer, Philippe & Witlox, Frank & De Weerdt, Yves & Van de Weghe, Nico, 2015. "Examining commuting patterns using Floating Car Data and circular statistics: Exploring the use of new methods and visualizations to study travel times," Journal of Transport Geography, Elsevier, vol. 48(C), pages 41-51.
    7. Mingke Xie & Yang Chen & Luliang Tang, 2022. "Exploring the Impact of Localized COVID-19 Events on Intercity Mobility during the Normalized Prevention and Control Period in China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    8. Pan, Yu & He, Sylvia Y., 2022. "Analyzing COVID-19’s impact on the travel mobility of various social groups in China’s Greater Bay Area via mobile phone big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 263-281.
    9. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Thomas, T. & Tutert, S.I.A., 2013. "An empirical model for trip distribution of commuters in The Netherlands: transferability in time and space reconsidered," Journal of Transport Geography, Elsevier, vol. 26(C), pages 158-165.
    11. Jiansuo Pei & Gaaitzen de Vries & Meng Zhang, 2022. "International trade and Covid‐19: City‐level evidence from China's lockdown policy," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 670-695, June.
    12. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    13. Ye, Maoxin & Lyu, Zeyu, 2020. "Trust, risk perception, and COVID-19 infections: Evidence from multilevel analyses of combined original dataset in China," Social Science & Medicine, Elsevier, vol. 265(C).
    14. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    15. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Yang, Senyan & Ning, Lianju & Jiang, Tingfeng & He, Yingqi, 2021. "Dynamic impacts of COVID-19 pandemic on the regional express logistics: Evidence from China," Transport Policy, Elsevier, vol. 111(C), pages 111-124.
    17. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    18. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    19. Kwang-Sub Lee & Jin Ki Eom, 2024. "Systematic literature review on impacts of COVID-19 pandemic and corresponding measures on mobility," Transportation, Springer, vol. 51(5), pages 1907-1961, October.
    20. Qiushi Chen & Michiko Tsubaki & Yasuhiro Minami & Kazutoshi Fujibayashi & Tetsuro Yumoto & Junzo Kamei & Yuka Yamada & Hidenori Kominato & Hideki Oono & Toshio Naito, 2021. "Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways," IJERPH, MDPI, vol. 18(14), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:mgrsod:v:28:y:2024:i:3:p:112-126:n:1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.