IDEAS home Printed from https://ideas.repec.org/a/vrs/jsesro/v8y2019i2p1-10n1.html
   My bibliography  Save this article

Detecting Anomalous Data in Household Surveys: Evidence for Argentina

Author

Listed:
  • González Fernando Antonio Ignacio

    (Instituto de Investigaciones Económicas y Sociales del Sur, UNS-CONICET.)

Abstract

This paper advances in the detection of anomalous data in income reports of Argentina. In particular, income declared by households surveyed in the Encuesta Permanente de Hogares (EPH, Permanent Household Survey in English) -for the period 2003-2017- and in the Encuesta Anual de Hogares Urbanos (EAHU, Annual Urban Household Survey in English) -for the period 2010-2014- are analyzed.A widely known technique in forensic accounting and auditing, such as Benford’s law -also known as the first digit law- is used. If the analyzed data were generated naturally-free of manipulation- it should follow the logarithmic distribution of Benford. The Chi-square test and the absolute mean deviation (MAD) are used for verification.The results suggest that the income reported in the EPH does not follow the Benford distribution and the degree of compliance with this law decreases significantly between 2007-2015 coinciding with the intervention period of the Instituto Nacional de Estadísticas y Censos (INDEC, National Institute of Statistics and Censuses in English).

Suggested Citation

  • González Fernando Antonio Ignacio, 2019. "Detecting Anomalous Data in Household Surveys: Evidence for Argentina," Journal of Social and Economic Statistics, Sciendo, vol. 8(2), pages 1-10, December.
  • Handle: RePEc:vrs:jsesro:v:8:y:2019:i:2:p:1-10:n:1
    DOI: 10.2478/jses-2019-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jses-2019-0001
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jses-2019-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcelo Medeiros & Juliana Castro Galvão & Luísa Azevedo Nazareno, 2018. "Correcting the Underestimation of Top Incomes: Combining Data from Income Tax Reports and the Brazilian 2010 Census," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 233-244, January.
    2. Ricardo Sartori Cella & Ercilio Zanolla, 2018. "Benford’s Law and transparency: an analysis of municipal expenditure," Brazilian Business Review, Fucape Business School, vol. 15(4), pages 331-347, July.
    3. Villas-Boas, Sofia B. & Fu, Qiuzi & Judge, George, 2017. "Benford’s law and the FSD distribution of economic behavioral micro data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 711-719.
    4. Druică, Elena & Oancea, Bogdan & Vâlsan, Călin, 2018. "Benford's law and the limits of digit analysis," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 75-82.
    5. Sofia B. Villas-Boas & Qiuzi Fu & George Judge, 2015. "Is Benford’s Law a Universal Behavioral Theory?," Econometrics, MDPI, vol. 3(4), pages 1-11, October.
    6. Finn, Arden & Ranchhod, Vimal, 2013. "Genuine Fakes: The prevalence and implications of fieldworker fraud in a large South African survey," SALDRU Working Papers 115, Southern Africa Labour and Development Research Unit, University of Cape Town.
    7. Tariq Ahmad Mir & Marcel Ausloos & Roy Cerqueti, 2014. "Benford's law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions," Papers 1410.2890, arXiv.org.
    8. Henselmann, Klaus & Scherr, Elisabeth & Ditter, Dominik, 2012. "Applying Benford's Law to individual financial reports: An empirical investigation on the basis of SEC XBRL filings," Working Papers in Accounting Valuation Auditing 2012-1, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Accounting and Auditing.
    9. George Judge & Laura Schechter, 2009. "Detecting Problems in Survey Data Using Benford’s Law," Journal of Human Resources, University of Wisconsin Press, vol. 44(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ausloos, Marcel & Cerqueti, Roy & Lupi, Claudio, 2017. "Long-range properties and data validity for hydrogeological time series: The case of the Paglia river," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 39-50.
    2. Hao, Zhuang & Zhang, Xudong & Wang, Yuze, 2024. "Assessing the accuracy of self-reported health expenditure data: Evidence from two public surveys in China," Social Science & Medicine, Elsevier, vol. 356(C).
    3. Arezzo, Maria Felice & Cerqueti, Roy, 2023. "A Benford’s Law view of inspections’ reasonability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    4. Bogdan Vasile Ileanu & Marcel Ausloos & Claudiu Herteliu & Marian Pompiliu Cristescu, 2019. "Intriguing behavior when testing the impact of quotation marks usage in Google search results," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2507-2519, September.
    5. Ausloos, Marcel & Castellano, Rosella & Cerqueti, Roy, 2016. "Regularities and discrepancies of credit default swaps: a data science approach through Benford's law," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 8-17.
    6. Shi, Jing & Ausloos, Marcel & Zhu, Tingting, 2018. "Benford’s law first significant digit and distribution distances for testing the reliability of financial reports in developing countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 878-888.
    7. T. Mir, 2016. "The leading digit distribution of the worldwide illicit financial flows," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(1), pages 271-281, January.
    8. Roy Cerqueti & Mario Maggi & Jessica Riccioni, 2024. "Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk," Annals of Operations Research, Springer, vol. 342(3), pages 1445-1469, November.
    9. M. Jayasree & C. S. Pavana Jyothi & P. Ramya, 2018. "Benford’s Law and Stock Market—The Implications for Investors: The Evidence from India Nifty Fifty," Jindal Journal of Business Research, , vol. 7(2), pages 103-121, December.
    10. Villas-Boas, Sofia B. & Fu, Qiuzi & Judge, George, 2017. "Benford’s law and the FSD distribution of economic behavioral micro data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 711-719.
    11. Ausloos, Marcel & Cerqueti, Roy & Bartolacci, Francesca & Castellano, Nicola G., 2018. "SME investment best strategies. Outliers for assessing how to optimize performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 754-765.
    12. Thomas Blanchet & Ignacio Flores & Marc Morgan, 2022. "The weight of the rich: improving surveys using tax data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 119-150, March.
    13. Sitsofe Tsagbey & Miguel de Carvalho & Garritt L. Page, 2017. "All Data are Wrong, but Some are Useful? Advocating the Need for Data Auditing," The American Statistician, Taylor & Francis Journals, vol. 71(3), pages 231-235, July.
    14. Chegere, Martin Julius, 2018. "Post-harvest losses reduction by small-scale maize farmers: The role of handling practices," Food Policy, Elsevier, vol. 77(C), pages 103-115.
    15. Henselmann, Klaus & Haller, Stefanie, 2017. "Potentielle Risikofaktoren für die Erhöhung der Betriebsprüfungswahrscheinlichkeit - Eine analytische und empirische Untersuchung auf Basis der E-Bilanz-Taxonomie 6.0 -," Working Papers in Accounting Valuation Auditing 2017-1, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Accounting and Auditing.
    16. Dang, Canh Thien & Owens, Trudy, 2020. "Does transparency come at the cost of charitable services? Evidence from investigating British charities," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 314-343.
    17. Theoharry Grammatikos & Nikolaos I. Papanikolaou, 2021. "Applying Benford’s Law to Detect Accounting Data Manipulation in the Banking Industry," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(1), pages 115-142, April.
    18. Kalaichelvan, Mohandass & Lim Kai Jie, Shawn, 2012. "A Critical Evaluation of the Significance of Round Numbers in European Equity Markets in Light of the Predictions from Benford’s Law," MPRA Paper 40960, University Library of Munich, Germany.
    19. Dominic Webber & Richard Tonkin & Martin Shine, 2020. "Using Tax Data to Better Capture Top Incomes in Official UK Income Inequality Statistics," NBER Chapters, in: Measuring Distribution and Mobility of Income and Wealth, pages 679-700, National Bureau of Economic Research, Inc.
    20. Essers, Dennis, 2013. "South African labour market transitions during the global financial and economic crisis: Micro-level evidence from the NIDS panel and matched QLFS cross-sections," IOB Working Papers 2013.12, Universiteit Antwerpen, Institute of Development Policy (IOB).

    More about this item

    Keywords

    Income; Household surveys; Benford’s law;
    All these keywords.

    JEL classification:

    • M42 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Auditing
    • M48 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:jsesro:v:8:y:2019:i:2:p:1-10:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.