IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i2d10.1007_s11749-023-00848-z.html
   My bibliography  Save this article

Severe testing of Benford’s law

Author

Listed:
  • Roy Cerqueti

    (La Sapienza University of Rome
    Université d’Angers)

  • Claudio Lupi

    (University of Molise)

Abstract

Benford’s law is often used to support critical decisions related to data quality or the presence of data manipulations or even fraud in large datasets. However, many authors argue that conventional statistical tests will reject the null of data “Benford-ness” if applied in samples of the typical size in this kind of applications, even in the presence of tiny and practically unimportant deviations from Benford’s law. Therefore, they suggest using alternative criteria that, however, lack solid statistical foundations. This paper contributes to the debate on the “large n” (or “excess power”) problem in the context of Benford’s law testing. This issue is discussed in relation with the notion of severity testing for goodness-of-fit tests, with a specific focus on tests for conformity with Benford’s law. To do so, we also derive the asymptotic distribution of the mean absolute deviation (MAD) statistic as well as an asymptotic standard normal test. Finally, the severity testing principle is applied to six controversial large datasets to assess their “Benford-ness”.

Suggested Citation

  • Roy Cerqueti & Claudio Lupi, 2023. "Severe testing of Benford’s law," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 677-694, June.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:2:d:10.1007_s11749-023-00848-z
    DOI: 10.1007/s11749-023-00848-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00848-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00848-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fewster, R. M., 2009. "A Simple Explanation of Benford's Law," The American Statistician, American Statistical Association, vol. 63(1), pages 26-32.
    2. C. W. J. Granger, 1998. "Extracting information from mega‐panels and high‐frequency data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(3), pages 258-272, November.
    3. Roy Cerqueti & Claudio Lupi, 2021. "Some New Tests of Conformity with Benford’s Law," Stats, MDPI, vol. 4(3), pages 1-17, September.
    4. Druică, Elena & Oancea, Bogdan & Vâlsan, Călin, 2018. "Benford's law and the limits of digit analysis," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 75-82.
    5. Sitsofe Tsagbey & Miguel de Carvalho & Garritt L. Page, 2017. "All Data are Wrong, but Some are Useful? Advocating the Need for Data Auditing," The American Statistician, Taylor & Francis Journals, vol. 71(3), pages 231-235, July.
    6. Micha Kaiser, 2019. "Benford'S Law As An Indicator Of Survey Reliability—Can We Trust Our Data?," Journal of Economic Surveys, Wiley Blackwell, vol. 33(5), pages 1602-1618, December.
    7. Tam Cho, Wendy K. & Gaines, Brian J., 2007. "Breaking the (Benford) Law: Statistical Fraud Detection in Campaign Finance," The American Statistician, American Statistical Association, vol. 61, pages 218-223, August.
    8. Block, Henry W. & Savits, Thomas H., 2010. "A General Example for Benford Data," The American Statistician, American Statistical Association, vol. 64(4), pages 335-339.
    9. Alex Ely Kossovsky, 2021. "On the Mistaken Use of the Chi-Square Test in Benford’s Law," Stats, MDPI, vol. 4(2), pages 1-35, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arezzo, Maria Felice & Cerqueti, Roy, 2023. "A Benford’s Law view of inspections’ reasonability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Adriano Silva & Sergio Floquet & Ricardo Lima, 2023. "Newcomb–Benford’s Law in Neuromuscular Transmission: Validation in Hyperkalemic Conditions," Stats, MDPI, vol. 6(4), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Delu & Chen, Fan & Mao, Jinqi & Liu, Nannan & Rong, Fangyu, 2022. "Are the official national data credible? Empirical evidence from statistics quality evaluation of China's coal and its downstream industries," Energy Economics, Elsevier, vol. 114(C).
    2. Philip E Hulme & Danish A Ahmed & Phillip J Haubrock & Brooks A Kaiser & Melina Kourantidou & Boris Leroy & Shana M Mcdermott, 2024. "Widespread imprecision in estimates of the economic costs of invasive alien species worldwide," Post-Print hal-04633043, HAL.
    3. Matthew A. Cole & David J. Maddison & Liyun Zhang, 2020. "Testing the emission reduction claims of CDM projects using the Benford’s Law," Climatic Change, Springer, vol. 160(3), pages 407-426, June.
    4. Karlo Kauko, 2024. "How to detect what drives deviations from Benford’s law? An application to bank deposit data," Empirical Economics, Springer, vol. 67(3), pages 1045-1061, September.
    5. Montag, Josef, 2017. "Identifying odometer fraud in used car market data," Transport Policy, Elsevier, vol. 60(C), pages 10-23.
    6. Călin Vâlsan & Andreea-Ionela Puiu & Elena Druică, 2024. "From Whence Commeth Data Misreporting? A Survey of Benford’s Law and Digit Analysis in the Time of the COVID-19 Pandemic," Mathematics, MDPI, vol. 12(16), pages 1-20, August.
    7. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).
    8. Hao, Zhuang & Zhang, Xudong & Wang, Yuze, 2024. "Assessing the accuracy of self-reported health expenditure data: Evidence from two public surveys in China," Social Science & Medicine, Elsevier, vol. 356(C).
    9. Arezzo, Maria Felice & Cerqueti, Roy, 2023. "A Benford’s Law view of inspections’ reasonability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    10. Sylwestrzak Marek, 2023. "Applying Benford’s law to detect earnings management," Journal of Economics and Management, Sciendo, vol. 45(1), pages 216-236, January.
    11. Lasse Pröger & Paul Griesberger & Klaus Hackländer & Norbert Brunner & Manfred Kühleitner, 2021. "Benford’s Law for Telemetry Data of Wildlife," Stats, MDPI, vol. 4(4), pages 1-7, November.
    12. Vadim S. Balashov & Yuxing Yan & Xiaodi Zhu, 2020. "Who Manipulates Data During Pandemics? Evidence from Newcomb-Benford Law," Papers 2007.14841, arXiv.org, revised Jan 2021.
    13. Tošić, Aleksandar & Vičič, Jernej, 2021. "Use of Benford's law on academic publishing networks," Journal of Informetrics, Elsevier, vol. 15(3).
    14. Eutsler, Jared & Kathleen Harris, M. & Tyler Williams, L. & Cornejo, Omar E., 2023. "Accounting for partisanship and politicization: Employing Benford's Law to examine misreporting of COVID-19 infection cases and deaths in the United States," Accounting, Organizations and Society, Elsevier, vol. 108(C).
    15. Willis A. Jones, 2020. "A Benford Analysis of National Collegiate Athletic Association Division I Finance Data," Journal of Sports Economics, , vol. 21(3), pages 234-255, April.
    16. Winter Patrick, 2023. "Bielefeld May In Fact Not Exist – Empirical Evidence From Official Population Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 243(1), pages 29-38, February.
    17. Stéphane Blondeau Da Silva, 2022. "An Alternative to the Oversimplifying Benford’s Law in Experimental Fields," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 778-808, November.
    18. Ronelle Burger & Canh Thien Dang & Trudy Owens, 2017. "Better performing NGOs do report more accurately: Evidence from investigating Ugandan NGO financial accounts," Discussion Papers 2017-10, University of Nottingham, CREDIT.
    19. Louie Rivers & Tamara Dempsey & Jade Mitchell & Carole Gibbs, 2015. "Environmental Regulation and Enforcement: Structures, Processes and the Use of Data for Fraud Detection," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-29, December.
    20. Tölö, Eero & Jokivuolle, Esa & Virén, Matti, 2017. "Do banks’ overnight borrowing rates lead their CDS price? Evidence from the Eurosystem," Journal of Financial Intermediation, Elsevier, vol. 31(C), pages 93-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:2:d:10.1007_s11749-023-00848-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.