Customer churn prediction model: a case of the telecommunication market
Author
Abstract
Suggested Citation
DOI: 10.2478/eoik-2022-0021
Download full text from publisher
References listed on IDEAS
- Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
- Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
- Arno de Caigny & Kristof Coussement & Wouter Verbeke & Khaoula Idbenjra & Minh Phan, 2021. "Uplift modeling and its implications for B2B customer churn prediction: A segmentation-based modeling approach," Post-Print hal-03599615, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
- Albérico Travassos Rosário & Joana Carmo Dias & Hélder Ferreira, 2023. "Bibliometric Analysis on the Application of Fuzzy Logic into Marketing Strategy," Businesses, MDPI, vol. 3(3), pages 1-22, July.
- Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
- Bram Janssens & Matthias Bogaert & Astrid Bagué & Dirk Van den Poel, 2024. "B2Boost: instance-dependent profit-driven modelling of B2B churn," Annals of Operations Research, Springer, vol. 341(1), pages 267-293, October.
- Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Marra, Marianna & Guo, Yihan, 2024. "Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach," Journal of Business Research, Elsevier, vol. 184(C).
- Meltem Sanisoglu & Sebnem Burnaz & Tolga Kaya, 2024. "A gateway toward truly responsive customers: using the uplift modeling to increase the performance of a B2B marketing campaign," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(4), pages 909-924, December.
- Jonathan Legare & Ping Yao & Victor S. Y. Lo, 2023. "A case for conducting business-to-business experiments with multi-arm multi-stage adaptive designs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 490-502, September.
- Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
- Sheng, Yujie & Zeng, Hongtai & Guo, Qinglai & Yu, Yang & Li, Qiang, 2023. "Impact of customer portrait information superiority on competitive pricing of EV fast-charging stations," Applied Energy, Elsevier, vol. 348(C).
- André Hartmann & Martin Behnisch & Robert Hecht & Gotthard Meinel, 2024. "Prediction of residential and non-residential building usage in Germany based on a novel nationwide reference data set," Environment and Planning B, , vol. 51(1), pages 216-233, January.
- Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong, 2023. "Multi-layer performance optimization based on operation parameter-working fluid-heat source for the ORC-VCR system," Energy, Elsevier, vol. 272(C).
More about this item
Keywords
marketing; classify customers; telecommunications market; machine learning; prediction; Data Science models;All these keywords.
JEL classification:
- C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other
- D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
- M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:econom:v:10:y:2022:i:2:p:109-130:n:7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.