IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v89y2002i1p145-158.html
   My bibliography  Save this article

Estimating and depicting the structure of a distribution of random functions

Author

Listed:
  • Peter Hall

Abstract

We suggest a nonparametric approach to making inference about the structure of distributions in a potentially infinite-dimensional space, for example a function space, and displaying information about that structure. It is suggested that the simplest way of presenting the structure is through modes and density ascent lines, the latter being the projections into the sample space of the curves of steepest ascent up the surface of a functional-data density. Modes are always points in the sample space, and ascent lines are always one-parameter structures, even when the sample space is determined by an infinite number of parameters. They are therefore relatively easily depicted. Our methodology is based on a functional form of an iterative data-sharpening algorithm. Copyright Biometrika Trust 2002, Oxford University Press.

Suggested Citation

  • Peter Hall, 2002. "Estimating and depicting the structure of a distribution of random functions," Biometrika, Biometrika Trust, vol. 89(1), pages 145-158, March.
  • Handle: RePEc:oup:biomet:v:89:y:2002:i:1:p:145-158
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    2. Frédéric Ferraty & Nadia Kudraszow & Philippe Vieu, 2012. "Nonparametric estimation of a surrogate density function in infinite-dimensional spaces," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 447-464.
    3. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    4. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:89:y:2002:i:1:p:145-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.