IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v10y2022i1p29-47n4.html
   My bibliography  Save this article

About the exact simulation of bivariate (reciprocal) Archimax copulas

Author

Listed:
  • Mai Jan-Frederik

    (XAIA Investment GmbH, Sonnenstr. 19, 80331 München, Germany)

Abstract

We provide an exact simulation algorithm for bivariate Archimax copulas, including instances with negative association. In contrast to existing simulation approaches, the feasibility of our algorithm is directly linked to the availability of an exact simulation algorithm for the probability measure described by the derivative of the parameterizing Pickands dependence function. We demonstrate that this hypothesis is satisfied in many cases of interest and, in particular, it is satisfied for piece-wise constant Pickands dependence functions, which can approximate the general case to a given level of desired accuracy. Finally, the algorithm can be leveraged to an exact simulation algorithm for bivariate copulas associated with max-infinitely divisible random vectors whose exponent measure has norm-symmetric survival function, so-called reciprocal Archimax copulas.

Suggested Citation

  • Mai Jan-Frederik, 2022. "About the exact simulation of bivariate (reciprocal) Archimax copulas," Dependence Modeling, De Gruyter, vol. 10(1), pages 29-47, January.
  • Handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:29-47:n:4
    DOI: 10.1515/demo-2022-0102
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2022-0102
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2022-0102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    2. Mai, Jan-Frederik & Scherer, Matthias, 2020. "On the structure of exchangeable extreme-value copulas," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    3. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    4. Clément Dombry & Sebastian Engelke & Marco Oesting, 2016. "Exact simulation of max-stable processes," Biometrika, Biometrika Trust, vol. 103(2), pages 303-317.
    5. Mai, Jan-Frederik, 2018. "Extreme-value copulas associated with the expected scaled maximum of independent random variables," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 50-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    2. Durante Fabrizio & Sánchez Juan Fernández & Sempi Carlo, 2018. "A note on bivariate Archimax copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 178-182, October.
    3. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    4. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    5. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    6. Krupskii, Pavel & Joe, Harry & Lee, David & Genton, Marc G., 2018. "Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 80-95.
    7. Elena Di Bernardino & Didier Rullière, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Working Papers hal-01147778, HAL.
    8. Elisa Perrone & Andreas Rappold & Werner G. Müller, 2017. "$$D_s$$ D s -optimality in copula models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 403-418, August.
    9. Mai, Jan-Frederik & Wang, Ruodu, 2021. "Stochastic decomposition for ℓp-norm symmetric survival functions on the positive orthant," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    10. Hofert, Marius, 2021. "Right-truncated Archimedean and related copulas," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 79-91.
    11. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    12. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    13. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes," Post-Print hal-00539032, HAL.
    14. Wysocki, Włodzimierz, 2013. "When a copula is archimax," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 37-45.
    15. Ferreira, Helena, 2012. "Multivariate maxima of moving multivariate maxima," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1489-1496.
    16. Rihab Bedoui & Makram Ben Dbabis, 2009. "Copulas and bivariate risk measures : an application to hedge funds," Working Papers hal-04140876, HAL.
    17. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    18. Bücher, Axel & Volgushev, Stanislav & Zou, Nan, 2019. "On second order conditions in the multivariate block maxima and peak over threshold method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 604-619.
    19. Hashorva, Enkelejd, 2018. "Representations of max-stable processes via exponential tilting," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2952-2978.
    20. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:29-47:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.