IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-47106-4_6.html
   My bibliography  Save this book chapter

A Survey of the Use of Copulas in Stochastic Frontier Models

In: Advances in Efficiency and Productivity Analysis

Author

Listed:
  • Christine Amsler

    (Michigan State University)

  • Peter Schmidt

    (Michigan State University)

Abstract

Copulas are used to create joint distributions with specified marginal distributions. The copula models the dependence between the corresponding marginal random variables. In the normal case, the multivariate normal distribution is a natural choice of joint distribution with normal marginals and its covariance matrix parameterizes the dependence between the individual marginal normals. But how would we specify a joint distribution for a normal and a half-normal, where these two random variables are allowed to be dependent? We can do this using copulas.

Suggested Citation

  • Christine Amsler & Peter Schmidt, 2021. "A Survey of the Use of Copulas in Stochastic Frontier Models," Springer Proceedings in Business and Economics, in: Christopher F. Parmeter & Robin C. Sickles (ed.), Advances in Efficiency and Productivity Analysis, pages 125-138, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-47106-4_6
    DOI: 10.1007/978-3-030-47106-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung-pin Lai, 2021. "Maximum simulated likelihood estimation of the seemingly unrelated stochastic frontier regressions," Empirical Economics, Springer, vol. 60(6), pages 2943-2968, June.
    2. Graziella Bonanno & Filippo Domma, 2022. "Analytical Derivations of New Specifications for Stochastic Frontiers with Applications," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    3. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-47106-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.