IDEAS home Printed from https://ideas.repec.org/a/vrs/crebss/v5y2019i1p21-32n3.html
   My bibliography  Save this article

Life tables estimation for pension system actuarial projection model with insufficient data: case of Republic of Srpska

Author

Listed:
  • Bošnjak Nikolina

    (Faculty of Economics of University of Banja Luka, Bosnia and Herzegovina)

  • Prorok Vesna

    (Faculty of Economics of University of East Sarajevo, Bosnia and Herzegovina)

Abstract

This article provides an upgraded model for actuarial projection of the dependency ratio of the pension fund in the Republic of Srpska. The nonexistence of complete upto-date life tables presents a huge problem of the pension system and life insurance industry modelling in the Republic of Srpska. Therefore, this article tries to encompass the problem by using the life tables of the Republic of Croatia as a starting point for adjustment of age-grouped life tables available for population of the Republic of Srpska. The actuarial projection model for the Pension and Disability Insurance Fund of the Republic of Srpska is upgraded by using these adjusted life tables and the best estimate mortality trend for mortality forecasting. The results of the Republic of Srpska pension fund dependency ratio projections obtained using a forecast of adjusted life tables are compared to the previous research on this topic which used the life tables of the Republic of Serbia for 2013 for the same model. This way we can observe the effect of life expectancy growth on pension fund’s dependency ratio estimates as one of the measures of pension fund’s sustainability.

Suggested Citation

  • Bošnjak Nikolina & Prorok Vesna, 2019. "Life tables estimation for pension system actuarial projection model with insufficient data: case of Republic of Srpska," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 5(1), pages 21-32, May.
  • Handle: RePEc:vrs:crebss:v:5:y:2019:i:1:p:21-32:n:3
    DOI: 10.2478/crebss-2019-0003
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/crebss-2019-0003
    Download Restriction: no

    File URL: https://libkey.io/10.2478/crebss-2019-0003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    2. Anastasia Kostaki, 2000. "A relational technique for estimating the age-specific mortality pattern from grouped data," Mathematical Population Studies, Taylor & Francis Journals, vol. 9(1), pages 83-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanza Queiroz, Bernardo & Lobo Alves Ferreira, Matheus, 2021. "The evolution of labor force participation and the expected length of retirement in Brazil," The Journal of the Economics of Ageing, Elsevier, vol. 18(C).
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    4. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    5. Jean-Charles Croix & Frédéric Planchet & Pierre-Emmanuel Thérond, 2013. "Mortality : a statistical approach to detect model misspecification," Post-Print hal-00839339, HAL.
    6. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    7. Salvatore Tedesco & Martina Andrulli & Markus Åkerlund Larsson & Daniel Kelly & Antti Alamäki & Suzanne Timmons & John Barton & Joan Condell & Brendan O’Flynn & Anna Nordström, 2021. "Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults," IJERPH, MDPI, vol. 18(23), pages 1-18, December.
    8. Johann Fuchs & Doris Söhnlein & Brigitte Weber & Enzo Weber, 2018. "Stochastic Forecasting of Labor Supply and Population: An Integrated Model," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 33-58, February.
    9. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.
    10. Valeria D’Amato & Emilia Di Lorenzo & Steven Haberman & Maria Russolillo & Marilena Sibillo, 2011. "The Poisson Log-Bilinear Lee-Carter Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 315-333.
    11. Katja Hanewald & Thomas Post & Helmut Gründl, 2011. "Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
    12. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    13. Kung, Ko-Lun & Hsieh, Ming-Hua & Peng, Jin-Lung & Tsai, Chenghsien Jason & Wang, Jennifer L., 2021. "Explaining the risk premiums of life settlements," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    14. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    15. Alonso Meseguer, Javier & Tuesta Cárdenas, David & Torres Torres, Diego & Villamide Muiña, Begoña, 2015. "Proyecciones de tablas generacionales dinámicas de mortalidad y riesgo de longevidad en países en vías de desarrollo: El caso chileno/Projections of Dynamic Generational Mortality Tables and Longevity," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 941-964, Septiembr.
    16. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    17. Pavel V. Shevchenko & Jonas Hirz & Uwe Schmock, 2015. "Forecasting Leading Death Causes in Australia using Extended CreditRisk$+$," Papers 1507.07162, arXiv.org.
    18. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    19. Arnold, Séverine & Glushko, Viktoriya, 2021. "Cause-specific mortality rates: Common trends and differences," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 294-308.
    20. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.

    More about this item

    Keywords

    best estimate mortality trend; life tables’ adjustment; pension fund dependency ratio;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • H7 - Public Economics - - State and Local Government; Intergovernmental Relations
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:crebss:v:5:y:2019:i:1:p:21-32:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.