Combining forecasts? Keep it simple
Author
Abstract
Suggested Citation
DOI: 10.2478/ceej-2023-0020
Download full text from publisher
References listed on IDEAS
- Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
- Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
- Yiuman Tse, 2016. "Asymmetric Volatility, Skewness, and Downside Risk in Different Asset Classes: Evidence from Futures Markets," The Financial Review, Eastern Finance Association, vol. 51(1), pages 83-111, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Specification Choices in Quantile Regression for Empirical Macroeconomics,"
Working Papers
22-25, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
- Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023.
"Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
- Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
- Dimitriadis, Timo & Liu, Xiaochun & Schnaitmann, Julie, 2020. "Encompassing tests for value at risk and expected shortfall multi-step forecasts based on inference on the boundary," Hohenheim Discussion Papers in Business, Economics and Social Sciences 11-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
- Jung-Bin Su & Jui-Cheng Hung, 2018. "The Value-At-Risk Estimate of Stock and Currency-Stock Portfolios’ Returns," Risks, MDPI, vol. 6(4), pages 1-42, November.
- Kimon Ntotsis & Alex Karagrigoriou & Andreas Artemiou, 2021. "Interdependency Pattern Recognition in Econometrics: A Penalized Regularization Antidote," Econometrics, MDPI, vol. 9(4), pages 1-13, December.
- Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023.
"LASSO principal component averaging: A fully automated approach for point forecast pooling,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
- Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
- Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
- Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
- Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
- Arturo Leccadito & Alessandro Staino & Pietro Toscano, 2024. "A novel robust method for estimating the covariance matrix of financial returns with applications to risk management," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-28, December.
- Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
- Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
- Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
- Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
- Yiuman Tse, 2018. "Return predictability and contrarian profits of international index futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(7), pages 788-803, July.
- Ben Salem, Ameni & Safer, Imene & Khefacha, Islem, 2022. "Value-at-Risk (VAR) Estimation Methods: Empirical Analysis based on BRICS Markets," MPRA Paper 113350, University Library of Munich, Germany, revised May 2022.
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
- Syuhada, Khreshna & Hakim, Arief & Suprijanto, Djoko, 2024. "Assessing systemic risk and connectedness among dirty and clean energy markets from the quantile and expectile perspectives," Energy Economics, Elsevier, vol. 129(C).
More about this item
Keywords
Machine learning; GARCH models; combined forecasts; commodities; VaR;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ceuecj:v:10:y:2023:i:57:p:343-370:n:11. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.