IDEAS home Printed from https://ideas.repec.org/a/ucp/jlabec/v24y2006i3p521-566.html
   My bibliography  Save this article

Evaluating the Differential Effects of Alternative Welfare-to-Work Training Components: A Reanalysis of the California GAIN Program

Author

Listed:
  • V. Joseph Hotz

    (University of California, Los Angeles)

  • Guido W. Imbens

    (University of California, Berkeley)

  • Jacob A. Klerman

    (RAND)

Abstract

We show how data from an evaluation in which subjects are randomly assigned to some treatment versus a control group can be combined with nonexperimental methods to estimate the differential effects of alternative treatments. We propose tests for the validity of these methods. We use these methods and tests to analyze the differential effects of labor force attachment (LFA) versus human capital development (HCD) training components with data from California's Greater Avenues to Independence (GAIN) program. While LFA is more effective than HCD training in the short term, we find that HCD is relatively more effective in the longer term.

Suggested Citation

  • V. Joseph Hotz & Guido W. Imbens & Jacob A. Klerman, 2006. "Evaluating the Differential Effects of Alternative Welfare-to-Work Training Components: A Reanalysis of the California GAIN Program," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 521-566, July.
  • Handle: RePEc:ucp:jlabec:v:24:y:2006:i:3:p:521-566
    DOI: 10.1086/505050
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1086/505050
    File Function: main text
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: https://libkey.io/10.1086/505050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    3. Oscar Mitnik, 2008. "How do Training Programs Assign Participants to Training? Characterizing the Assignment Rules of Government Agencies for Welfare-to-Work Programs in California," Working Papers 0907, University of Miami, Department of Economics.
    4. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    5. Hilary Williamson Hoynes, 2000. "Local Labor Markets And Welfare Spells: Do Demand Conditions Matter?," The Review of Economics and Statistics, MIT Press, vol. 82(3), pages 351-368, August.
    6. Lechner, Michael, 1999. "Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption," IZA Discussion Papers 91, Institute of Labor Economics (IZA).
    7. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    8. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    9. Ham, John C & LaLonde, Robert J, 1996. "The Effect of Sample Selection and Initial Conditions in Duration Models: Evidence from Experimental Data on Training," Econometrica, Econometric Society, vol. 64(1), pages 175-205, January.
    10. V. Joseph Hotz & Guido W. Imbens & Jacob A. Klerman, 2000. "The Long-Term Gains from GAIN: A Re-Analysis of the Impacts of the California GAIN Program," NBER Working Papers 8007, National Bureau of Economic Research, Inc.
    11. Dehejia, Rajeev H, 2003. "Was There a Riverside Miracle? A Hierarchical Framework for Evaluating Programs with Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 1-11, January.
    12. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    13. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    14. Joseph Hotz, V. & Imbens, Guido W. & Mortimer, Julie H., 2005. "Predicting the efficacy of future training programs using past experiences at other locations," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 241-270.
    15. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    16. Donald B. Rubin, 1977. "Assignment to Treatment Group on the Basis of a Covariate," Journal of Educational and Behavioral Statistics, , vol. 2(1), pages 1-26, March.
    17. Friedlander, Daniel & Robins, Philip K, 1995. "Evaluating Program Evaluations: New Evidence on Commonly Used Nonexperimental Methods," American Economic Review, American Economic Association, vol. 85(4), pages 923-937, September.
    18. Guido W. Imbens, 1999. "The Role of the Propensity Score in Estimating Dose-Response Functions," NBER Technical Working Papers 0237, National Bureau of Economic Research, Inc.
    19. Couch, Kenneth A, 1992. "New Evidence on the Long-Term Effects of Employment Training Programs," Journal of Labor Economics, University of Chicago Press, vol. 10(4), pages 380-388, October.
    20. V. Joseph Hotz & Guido W. Imbens & Julie H. Mortimer, 1999. "Predicting the Efficacy of Future Training Programs Using Past Experiences," NBER Technical Working Papers 0238, National Bureau of Economic Research, Inc.
    21. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    22. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    23. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    24. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    3. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    4. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    5. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    6. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    7. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    8. Hujer, Reinhard & Wellner, Marc, 2000. "The Effects of Public Sector Sponsored Training on Individual Employment Performance in East Germany," IZA Discussion Papers 141, Institute of Labor Economics (IZA).
    9. Michael Lechner, 2004. "Sequential Matching Estimation of Dynamic Causal Models," University of St. Gallen Department of Economics working paper series 2004 2004-06, Department of Economics, University of St. Gallen.
    10. Carlos A. Flores & Oscar A. Mitnik, 2013. "Comparing Treatments across Labor Markets: An Assessment of Nonexperimental Multiple-Treatment Strategies," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1691-1707, December.
    11. Raaum, Oddbjørn & Torp, Hege & Zhang, Tao, 2003. "Business cycles and the impact of labour market programmes," Memorandum 14/2002, Oslo University, Department of Economics.
    12. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    13. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    14. V. Joseph Hotz & Guido W. Imbens & Jacob A. Klerman, 2000. "The Long-Term Gains from GAIN: A Re-Analysis of the Impacts of the California GAIN Program," NBER Working Papers 8007, National Bureau of Economic Research, Inc.
    15. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2003. "Evaluating the impact of education on earnings in the UK: Models, methods and results from the NCDS," IFS Working Papers W03/20, Institute for Fiscal Studies.
    16. John C. Ham & Xianghong Li & Patricia B. Reagan, 2004. "Propensity Score Matching, a Distance-Based Measure of Migration, and the Wage Growth of Young Men," Working Papers 2004_3, York University, Department of Economics.
    17. Barbara Sianesi, 2001. "Differential effects of Swedish active labour market programmes for unemployed adults during the 1990s," IFS Working Papers W01/25, Institute for Fiscal Studies.
    18. Fajnzylber, Pablo & Maloney, William F. & Rojas, Gabriel V. Montes, 2006. "Releasing constraints to growth or pushing on a string ? the impact of credit, training, business associations, and taxes on the performance of Mexican micro-firms," Policy Research Working Paper Series 3807, The World Bank.
    19. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    20. Chabé-Ferret, Sylvain, 2015. "Analysis of the bias of Matching and Difference-in-Difference under alternative earnings and selection processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 110-123.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • I3 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucp:jlabec:v:24:y:2006:i:3:p:521-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journals Division (email available below). General contact details of provider: https://www.journals.uchicago.edu/JOLE .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.