IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v49y2017i8p814-826.html
   My bibliography  Save this article

A sparse partitioned-regression model for nonlinear system–environment interactions

Author

Listed:
  • Shuluo Ning
  • Eunshin Byon
  • Teresa Wu
  • Jing Li

Abstract

This article focuses on the modeling of nonlinear interactions between the design and operational variables of a system and the multivariate outside environment in predicting the system's performance. We propose a Sparse Partitioned-Regression (SPR) model that automatically searches for a partition of the environmental variables and fits a sparse regression within each subdivision of the partition, in order to fulfill an optimal criterion. Two optimal criteria are proposed, a penalized and a held-out criterion. We study the theoretical properties of SPR by deriving oracle inequalities to quantify the risks of the penalized and held-out criteria in both prediction and classification problems. An efficient recursive partition algorithm is developed for model estimation. Extensive simulation experiments are conducted to demonstrate the better performance of SPR compared with competing methods. Finally, we present an application of using building design and operational variables, outdoor environmental variables, and their interactions to predict energy consumption based on the Department of Energy's EnergyPlus data sets. SPR produces a high level of prediction accuracy. The result of the application also provides insights into the design, operation, and management of energy-efficient buildings.

Suggested Citation

  • Shuluo Ning & Eunshin Byon & Teresa Wu & Jing Li, 2017. "A sparse partitioned-regression model for nonlinear system–environment interactions," IISE Transactions, Taylor & Francis Journals, vol. 49(8), pages 814-826, August.
  • Handle: RePEc:taf:uiiexx:v:49:y:2017:i:8:p:814-826
    DOI: 10.1080/24725854.2017.1299955
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2017.1299955
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2017.1299955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Chiang C-T. & Rice J. A & Wu C. O, 2001. "Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 605-619, June.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Choi, Nam Hee & Li, William & Zhu, Ji, 2010. "Variable Selection With the Strong Heredity Constraint and Its Oracle Property," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 354-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    2. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    3. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    4. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    5. Bhatnagar, Sahir R. & Lu, Tianyuan & Lovato, Amanda & Olds, David L. & Kobor, Michael S. & Meaney, Michael J. & O'Donnell, Kieran & Yang, Archer Y. & Greenwood, Celia M.T., 2023. "A sparse additive model for high-dimensional interactions with an exposure variable," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    6. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    7. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    8. Long Feng & Changliang Zou & Zhaojun Wang & Xianwu Wei & Bin Chen, 2015. "Robust spline-based variable selection in varying coefficient model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 85-118, January.
    9. Kong, Dehan & Bondell, Howard D. & Wu, Yichao, 2015. "Domain selection for the varying coefficient model via local polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 236-250.
    10. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
    11. Ryan A. Peterson & Joseph E. Cavanaugh, 2022. "Ranked sparsity: a cogent regularization framework for selecting and estimating feature interactions and polynomials," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 427-454, September.
    12. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    13. Ning Hao & Hao Helen Zhang, 2017. "A Note on High-Dimensional Linear Regression With Interactions," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 291-297, October.
    14. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    15. Li, Haocheng & Shu, Di & He, Wenqing & Yi, Grace Y., 2019. "Variable selection via the composite likelihood method for multilevel longitudinal data with missing responses and covariates," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 25-34.
    16. Wang, Lu & Shen, Jincheng & Thall, Peter F., 2014. "A modified adaptive Lasso for identifying interactions in the Cox model with the heredity constraint," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 126-133.
    17. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    18. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    19. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    20. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:49:y:2017:i:8:p:814-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.